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Foreword

The aim of this thesis is to introduce and study the notion of holonomy of foliations. To
this end, we devote a large portion of our time studying the basic theory surrounding
regular and singular foliations, groupoids, algebroids and several other related topics.
Our first objective is to construct the holonomy groupoid of regular foliations, which is a
classical object. Afterwards, we give an introduction to the holonomy groupoid as given
by Androulidakis and Skandalis in their pioneering paper [AS], and we use the notion of
holonomy transformations, introduced by Androulidakis and Zambon in [AZ], to give this
groupoid a geometric point of view. Through the use of lots of examples and figures, we
try to deepen the understanding of the reader.
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Symbols

C∞(M,E) or Γ(E) Sections of vector bundle E
F A foliation
g A Lie algebra
Fx Leaf through x
X ×f,g Y Fibered product
# The anchor map of a Lie algebroid
X(M) The vector fields on M
G⇒M Lie groupoid
M/F The leaf space
x ∼ y x is related to y with respect to some equivalence re-

lation
[x] the equivalence class of x with respect to some equiv-

alence relation
Gx The isotropy group of x
GyM An action of G on M
M ×N The product manifold from M and N
α : x 7→ y A path α from x to y
|X| The cardinality of the set X
1x The unit arrow at x
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Introduction

We divide the introduction into three parts: The motivation for the topics in this thesis,
stating the problems we will discuss and finally giving a sketch of how we will approach
these problems.

Motivation

Central to this thesis is the notion of foliations. Foliations arose from the study of differ-
ential equations, where they were used to qualitatively study problems in the field. Since
then, foliations have become a field on their own (often referred to as foliation theory) and
are intensively studied in modern day mathematics. Their applications are widespread,
for example in Poisson geometry, differential equations, optimal control theory, geometric
mechanics and Lie group actions. We distinguish two types of foliations, regular foliations
and singular foliations. The first two chapters are devoted to discussing regular foliations,
whilst the remainder looks at the singular case. Intuitively, a regular foliation is a decom-

position of a smooth manifold M into immersed submanifolds (called the leaves), which
fit together nicely in the manifold. The concrete definition is given in definition 1.1. The
decomposition of our manifold can be locally modelled by the affine decomposition of Rn

into copies of Rk, see figure 1.

Figure 1: The local picture of a foliation

Despite the fact that they have such a nice local interpretation, their global structure
can be quite involved. To be able to understand foliations a bit better, the notion of the
holonomy groupoid comes into play. The holonomy groupoid is the focal point of this

vi



CONTENTS vii

thesis. In the case of regular foliations, it is a classical object dating back to the works
of Ehresmann in 1965 ([Ehr]). To motivate why this groupoid is important, we highlight
two applications. For the first one, as we will see in this thesis, the holonomy groupoid
encodes a lot of geometric information regarding the foliation. For example, it tells us how
the leaves of a foliation wrap around each other globally. Another example comes from
the fact that a foliation can be seen as an equivalence relation on the manifold with some
smoothness criteria. In general, this equivalence relation (seen as the set of pairs (x, y)
with x ∼ y) is not a smooth submanifold of the product manifold M ×M . The holonomy
groupoid can be used as a model of the equivalence relation, and is always smooth. These
give a motivation from a purely geometric point of view. The second application (as
mentioned in [Gd], pp.3) lies in the field of non-commutative geometry. Recall that by a
theorem of Gelfand, one can model a commutative C∗-algebra on the space of functions of
a topological space X. In the non-commutative setting, this no longer need to hold true.
The upshot of the holonomy groupoid is that one can associate to them a C∗−algebra
that in general fails to be commutative, which yields a more geometric interpretation of
these C∗−algebras.

Problem statement

Motivated by the applications of the holonomy groupoid, we will tackle the following three
problems.

1. How is the holonomy groupoid of a regular foliation constructed?

2. Can this construction be generalised to the more general case of singular foliations?

3. Is there a way to geometrically interpret these holonomy groupoids?

Approach

Before tackling any of these problems, we will give a soft introduction to foliation theory.
Not only does this give the reader more context, it also supplies us with tools and examples
that are crucial to understand the problems at hand. This is the content of chapter 1.
Chapter 2 is devoted to constructing the holonomy groupoid for regular foliations, by
giving the necessary background information. In chapter 3, we introduce the reader to
singular foliations. By giving some basic results, we familiarise the reader with some
important properties that they possess. In chapter 4, we will discuss the construction of
the holonomy groupoid as given by Androulidakis and Skandalis in [AS]. We guide the
reader through the construction, motivating the steps taken along the way. Finally, in
chapter 5, we tackle the final problem. Using the notion of holonomy transformations, as
introduced by Androulidakis and Zambon ([AZ]), we show a way to geometrically think
about the holonomy groupoid.



Chapter 1

Regular Foliations

In this chapter, we discuss the basics of foliation theory in the regular case. We devote
a large portion of the chapter on giving examples and constructions. Afterwards, we
will talk about the holonomy of foliations, which measure in some sense how much the
leaves twist. We will also briefly discuss the topology of the leaves. Good references are
[MM], [Lee] and [CC]. For the section on the topology of the leaves, a good reference is
[CN]. The introductory section is also based on written notes from the master course in
Differential Geometry at KU Leuven during the first semester in 2018, given by professor
Marco Zambon.

1.1 Definitions and basic results

1.1.1 Definitions

As mentioned in the introduction, a foliation is a nice partition of our manifold into
immersed submanifolds.

Definition 1.1. Let M be a smooth manifold of dimension n. Let {Lα}α∈I be a family of
disjoint k−dimensional, connected and immersed submanifolds of M . We say that {Lα}α
is a rank k (regular) foliation of M if the following conditions are satisfied.

1.
∐

α Lα = M , i.e M is covered by the Lα.

2. For each point p ∈ M , there is a chart (U, φ = (x1, ..., xn)) at p such that for each
Lα, the set U ∩ Lα is either empty, or

φ(Lα ∩ U) =
⋃
i∈I

{
xk+1 = αik+1, ..., xn = αin

}
,

where I is some countable index set and each αij ∈ R is a constant.

We denote a foliation by F , and call the tuple (M,F) a foliated manifold. We call the
elements of {Lα} the leaves of the foliation.

In other words, a foliation is a partition of our manifold such that locally, this partition
looks like the affine partition of Rn into Rk−dimensional subspaces. In this point of view,
one should interpret a foliation as copies of Rk ’stacked up together’ in some bigger

1



CHAPTER 1. REGULAR FOLIATIONS 2

ambient Euclidean space Rn. Despite being very intuitive, this definition is often not that
handy when doing computations. An alternative definition is obtained via Frobenius’
lemma (see Appendix 6.1).

Figure 1.1: The local picture of a foliation

Definition 1.2. [Lee] A foliation F on a smooth manifold M is an involutive distribution
D ⊂ TM .

The final definition of regular foliations is of another flavour. It uses a special kind of
atlas, called the foliation atlas that witnesses the identification of the foliation with the
affine decomposition of Rn. However, since a foliation is a global object, one needs to pay
attention when considering overlaps of foliation charts.

Definition 1.3. [MM] Let M be a smooth n−manifold. Suppose that we have an atlas{
φi : Ui → Rn−k × Rk

}
i∈I

such that the change of chart diffeomorphisms are of the form

φij(x, y) = φi ◦ (φj|Ui∩Uj
)−1(x, y) = (h1(x, y), h2(y))

with respect to the affine decomposition Rn = Rn−k × Rk. Remark that h2 does not
depend on x. Then we call this atlas the foliation atlas of M .

Remark. This gives us a decomposition of each Ui into the connected components of the
submanifolds φ−1i (Rn−k × {y}), y ∈ Rk. We call such connected components the plaques
of M .

Following proposition ensures us that the condition on the overlap is sufficient.

Proposition 1.1. The change of chart diffeomorphisms respect the decomposition of
each Ui into plaques. in other words: the decomposition of two chart domains Ui and Uj
into plaques coincide on their intersection.
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Proof. Consider two local charts (U, φ) and (V, ψ) in the foliation atlas. If U ∩ V = ∅,
there is nothing to prove. Hence, we may suppose p ∈ U ∩V . This will lie on two plaques,
LU = φ−1(Rn−k, y) and LV = ψ−1(Rn−k, y′), where y, y′ are fixed. Write p = φ−1(x, y) =
ψ−1(x′, y′). We have to show that LU ∩ V = LV ∩ U . Since LU , V are both open, we can
take a point q ∈ U∩V such that q ∈ LU . Recall that the transition function ϑ = ψ◦φ−1 is
of the form (h1(x, y), h2(y)). Hence, π2 ◦ ϑ(p) = π2 ◦ ϑ(q) = h2(y). Thus, y′ = z′ = h2(y),
meaning that q ∈ LV . Analogously, one can show that LV ∩ U ⊂ LU ∩ V , which shows
the proposition.

Hence, we can glue together the (locally defined) plaques into a well-defined global
decomposition of M in the following way.

Definition 1.4. Let M be a smooth manifold, endowed with a foliation atlas (Ui, φi).
Equip it with an equivalence relation on M defined as follows: p ∼ q if and only if there
is a sequence of plaques α1, ..., αk with p ∈ αk and q ∈ αk, where αi ∩ αi+1 6= ∅ for all i.
We call the equivalence classes of this relation the leaves of the foliation chart.

Suppose we wish to capture this equivalence relation using the natural set

R = {(x, y)|x ∼ y} ⊂M ×M.

Evidently, this captures all the information of the foliation. However, in general, it fails
to be smooth (for an example of this fact, we refer to [Ph]). This huge drawback will
lead us to the notion of holonomy which we will define later. This generalises above idea,
but in the case of regular foliations is always smooth. Another interesting object is the
leaf space of a foliated manifold (M,F). This is the quotient M/F , which we endow
with the quotient topology. This topological space can have very messy topology and
sometimes recovers barely any information.

Remark. Being an immersed submanifold implies that each leaf is a fortiori also a topo-
logical space. The topology of the leaves is the one generated by taking plaques as basis
opens. We will see later that this topology need not coincide with the subspace topology
of the ambient manifold. We now consider the smooth structure of the leaves. For this,
we use ([CN],pp. 31). Given a point p on a leaf F , choose a foliation chart (U, φ) around
p. Denote by Lp the plaque of the foliation chart containing p. Like before, we can then
write Lp = φ−1(Rk × y) for some fixed y. Denote by φ1 the map π1 ◦ φ. Here π1 is
the projection map π1 : Rk × Rn−k 7→ Rk. It is easy to see that φ1|Lp : Lp → Rk is a
homeomorphism onto its image. The set

U = {(L, φ1)|(U, φ) is a foliation chart, L ⊂ F is a plaque}

defines a smooth structure for the leaf F . For more details, we refer to the source material
([CN], pp.31-32).
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1.1.2 Examples of Regular Foliations

Having an arsenal of examples is often almost as important as knowing the definition itself.
Therefore, we devote a section on listing some important examples (and non-examples)
of regular foliations.

Example 1.1. In some sense the easiest of foliations is given by the affine decompositions
of Euclidean spaces. An evident family of foliations on Rn is given by

Rn = ∪x∈Rn−kRk × {x}

where for example the identity map generates a foliation atlas. Since any vector space
automorphism θ of Rn respects affine decompositions, this brings forth a new class of
(trivial) examples.

Example 1.2. Another trivial example is the foliation of a smooth manifold M by points.
The associated distribution is the zero distribution. Notice that, in particular, every
manifold can be foliated (although not necessarily by a particularly interesting foliation).
On the other extreme, any manifold M can also be foliated by the one-leaf foliation. This
is the foliation whose leaf is M .

Example 1.3. [MM] Let f : Mm → Nn be a submersion. This induces a foliation
F(f) on M as follows. By the submersion theorem, there are local coordinates such that
f is a projection of Rm onto Rn. Fibers of such projection maps give rise to an affine
decomposition as in example 1.1. Hence, the fibers of a submersion locally look like the
desired decomposition. One can show that the partition whose leaves are the fibers of f
is indeed a foliation.

Example 1.4. [CC] Consider the partition of the square into lines of slope a. Since this
partition is invariant under translations, this induces a partition of the torus T 2 by lines
as seen in figure 1.2. One can show that this partition is a foliation on T 2, called the
Kronecker foliation. The geometry of the leaves is highly dependent on the rationality
of a. If a is rational, one can evidently see that the leaves form closed loops on the
torus, hence they are compact. The topology on the leaf is equivalent with the subspace
topology so that they are in fact embedded submanifolds. Being a compact, connected
one-dimensional manifold, they are diffeomorphic to S1. In the case where a is irrational,
the leaf winds infinitely many often around the torus, never closing up. In this case, they
are dense in T 2 and are diffeomorphic to R. In particular, they are not compact. Notice
that in this case, the leaves are not embedded submanifolds! Indeed, a manifold has to be
locally path-connected which is not the case for the leaves in the topology of the torus.
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Figure 1.2: The Kronecker foliation on the torus

Example 1.5. [Lee] Consider the distribution D = {∂y, ∂x + y∂z}, see figure 1.3. This
does not define a foliation of R3, since it is not an involutive distribution. This distri-
bution is, in fancy terms, an example of a contact distribution on R3. For a geometric
interpretation of the involutivity condition, we recall following result.

Lemma 1.1. [Lee] Let M be a smooth manifold, N ⊂ M an immersed submanifold.
Let V be a smooth vector field tangent to N . Then any integral curve γ of V such that
γ(0) ∈ N , we can find an ε > 0 such that γ((−ε, ε)) ⊂ N .

Hence, suppose L is a leaf of the distribution D through the origin. Then, flowing
along ∂x + x∂z starting from the origin traces out a piece of the x−axis. By above result,
there is a small piece in the x−axis that must be contained in L. Flowing along ∂y,
starting from these points on the x−axis, traces out a small piece of the (x, y)−plane.
However, this implies that L cannot be an integral manifold.

Figure 1.3: The standard contact structure on R3
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Example 1.6. [MM] A rich source of examples comes from Lie group actions. It is a gen-
eral result that the orbits Gx of Lie group actions can be seen as immersed submanifolds
of M . One problem is that in general these orbits are not equidimensional. An easy way
to go around this problem is by restricting our attention to so-called foliated Lie group
actions, which are actions such that dim(Gx) is constant for x.
As an example, consider the action of S1 on the punctured plane R2 \{(0, 0)}. The orbits
are concentric circles. To see that it is a foliation, notice that the infinitesimal generator
of this action is y∂x − x∂y, which gives rise to an involutive distribution on M .

Figure 1.4: The orbits of the action of S1

Example 1.7. Consider the Möbius band M , foliated by the action of S1 obtained by
wrapping S1 around M twice, except on the central circle. This is sketched in figure 1.5.
This is easily seen to be a foliated Lie group action. This example will be used frequently
later on.
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Figure 1.5: The foliation on the Mobiüs band

Example 1.8. [MM] Another rich source of examples comes from so-called quotient
foliations. Suppose we have a manifold M with a foliation F . Suppose a group G acts on
M freely, properly discontinuous and by diffeomorphisms. In this case, from the quotient
manifold theorem ([Lee], thm. 21.10), we obtain a manifold M/G.
A sufficient condition for a foliation F on M to drop down to M/G is that the action
leaves the leaves invariant, in the sense that leaves get mapped to leaves. In this case, we
get a foliation of M/G whose leaves are diffeomorphic to the quotient L/GL, where GL is
the isotropy of L, defined as

GL = {g ∈ G|g(L) ⊂ L} .

A special type of quotient foliations is given by suspensions of diffeomorphisms. The idea
is as follows: Suppose we have a diffeomorphism f : M →M . Consider the natural vector
bundle R ×M over M . This can be foliated by leaves of the form R × {x} for each x.
Define the following action of Z on R×M ;

Z y R×M : (z, (r, x)) 7→ (r + z, f z(x)).

Since f is a diffeomorphism, f z makes sense for all integers z. Evidently, f maps leaves
to leaves, and acts properly discontinuous. Hence, we get a quotient foliation on the
manifold (R×M)/Z. We will denote this manifold by R×ZM . Notice that this space is
a fiber bundle over S1, and the corresponding leaves are 1−dimensional.
Notice that the foliation on the Möbius band is an example of this type, where the
diffeomorphism is −Id.
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Example 1.9. [MM] Suppose we have a smooth map f : N →M , with F a foliation on
M . One question is whether a map can pull back the foliation on M to a foliation f ∗(N).
The following definition gives a sufficient condition on f .

Definition 1.5. Let f : N → M be smooth. Suppose U is an immersed submanifold of
M . We say that f is transversal to U if for all x in N , one has

(df)x(Tx(N)) + Tf(x)U = TxM.

We say that f is transversal to F if it is transversal to every leaf it meets, and denote it
by f t F .

One can show ([MM], pp. 14) that if f is transversal to F , the partition of N by the
connected components of the sets f−1(F ) (where F is a leaf of F) is a foliation on N .

Example 1.10. [MM] In this example, we define the notion of flat bundles. The idea is
to define a fiber bundle E

π−→M , and foliate E by ’horizontal’ leaves, i.e leaves that under
π get mapped (as covering projections) to M . Let us start by an illuminating example.
Consider the Möbius band E (see example 1.7 and figure 1.5), which can easily be seen
as a fiber bundle over S1. Endowing E with the usual foliation, notice that each leaf gets
mapped to S1 under π as a covering map. Every leaf except the central leaf are equivalent
(as covering spaces) to the two-cover of S1. The central leaf is easily seen to equivalent
to the covering of S1 by itself.

For the general case, let M be a smooth manifold. Suppose there exists a connected
manifold M̃ , upon which a group G acts freely and discontinuously, such that M̃/G = M .
Suppose we have another manifold F that also has an action of G. Then we can form
the quotient space E = M̃ ×G F . This is obtained by identifying the actions, in the sense
that we identify (mg, f) with (m, gf). By doing this, we can look at E as if it was the
orbit space of M̃ × F . One can show that E is a smooth manifold.

To get a fibre bundle, notice that the projection π1 : M̃×F → M̃ induces a submersion
π : E → M , and we have the following commutative diagram, where q and q′ are the
quotient maps.

M̃ × F E

M̃ M

q

π1 π

q′

We can then view π : E → M as a fiber bundle over M with fibre F . In our example,
we have that M̃ = R, M = S1, F = (−1, 1), G = Z and E is the Möbius band. The
G−action on M̃ comes from identifying Z with the fundamental group, and the G−action
on F is (z, x) = (−1)zx.

The foliation of M̃×F given by M̃×{x} , x ∈ F is evidently invariant under G−action.
Hence, we have a foliation F on E. Notice that the leaf obtained from M̃×{z} is naturally
diffeomorphic to M̃/Gz, where Gz is the isotropy of z. Furthermore, the restriction
π : M̃/Gz →M is a covering projection of M .
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1.1.3 Topology of Leaves

We have already seen that the topology of leaves need not coincide with the topology from
the ambient manifold. In this section, we are going to focus on the leaves of a foliation.

When looking at the local model of foliations, there is a clear notion of ’transversal’
and ’longitudinal’ or ’leafwise’. We have yet to introduce a notion that captures the
transversal information.
Suppose F is a foliation on M , and let F be some fixed leaf of F . Then the plaques of F
are of the form φ−1(U1 × {x}), for some foliation chart (φ, U1). Similarly, one can define
a transverse section of F by φ−1(y × U2). Notice that TpF ⊕ TpS = TpM , motivating the
terminology.

As mentioned before, leaves are used for leafwise information, and transversal sections
are used for transversal information. A stringent question is whether transversal sections
capture only transversal information, in the sense that they capture the same information
near some leaf F regardless of position on the leaf.

Following proposition, aptly called transversal uniformity, ensures us that this is the
case. The following proposition and proof can be found in ([CN], pp. 49).

Proposition 1.2. [CN] Let (M,F) be a foliated manifold, and F a leaf of F . For each
pair of points p, q ∈ F , we can find transverse sections S, T at p and q respectively,
together with a diffeomorphism f : S → T with the property that for every leaf F ′, one
has

f(F ′ ∩ S) = F ′ ∩ T.

Proof. Let p, q be two points on the same leaf. By definition, there exists a sequence
(α1, U1), ..., (αn, Un) of foliation charts such that Ui ∩ Ui+1 6= ∅ for each i, and so that
p ∈ U1 and q ∈ Un. Since the intersection of subsequent chart domains is non-empty,
we can fix a sequence of points xi in the intersection of the plaques Ui ∩ Ui+1. We set
x0 = p, and we require xn = q. For each of these points, we can choose a transversal disk
Di. Shrinking Di if necessary, we can assume that each Di intersects the plaques of αi+1

just once. This allows us to define a map φ : Di → Di+1, by mapping each point on Di

to the unique point on Di+1 lying on the same plaque. In local coordinates, this map is
nothing more than a translation, and hence evidently smooth. Doing this for every disk,
we get a diffeomorphism φ : D0 → Dn which by construction satisfies the intersection
property.

This result tells us what the global topology of transversal sections is allowed to look
like, only knowing local information. What this doesn’t say is that we should therefore not
care about the global transversal behaviour of foliations. We motivate this by following
example.

Example 1.11. Let M be the Möbius band, endowed with its familiar foliation. Con-
sider a transverse section T of F at a point p on the central circle. Let us consider the
allowed automorphisms of T that satisfy the intersection property in above proposition.
One evident choice is the identity. Notice that T intersects leaves close to the central
circle twice, giving us two plaques P F

1 and P F
2 for each such leaf F .

Assume that T is a transversal section that is symmetric, in the sense that it intersects
either both plaques of the same leaf, or doesn’t intersect the leaf at all. Then the diffeo-
morphism of T that interchanges P F

1 and P F
2 also satisfies the intersection property, but
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is of a completely different nature. This diffeomorphism, intuitively, flips T around its
centre. This implies that there is some twisting in the transverse geometry. To see this,
one loops T around the Möbius ring as in figure 1.6. To measure this twisting, we use the
notion of holonomy.

Figure 1.6: The twisting behaviour of the foliation (T : yellow)

Before continuing, we give a nice corollary of proposition 1.2.

Proposition 1.3. ([CN], pp. 51) Let (M,F) be a foliated manifold, and F a closed leaf
of F . Then F is an embedded submanifold.

Proof. Let (U, φ) be a foliation chart of F such that U ∩ F 6= ∅. Let T be a transverse
section whose closure is contained in U and intersects F . There are only countably many
plaques in F ∩U in this chart, by definition of a foliation. Hence, T ∩F is also countable.
Since F is closed, this implies that F ∩ T is countable. We claim that this implies that
F ∩ T is discrete. Indeed, suppose that it is not discrete. Then F ∩ T has at least one
point which is not isolated. We claim that this can only hold if F ∩ T is perfect, in the
sense no point is isolated. First, notice that F ∩T cannot have non-empty interior, since it
must be countable. Suppose that there exists a point p in F ∩T which is not isolated. Let
q be any other point in F ∩ T . By transverse uniformity, we know that any transversal
section at q can be diffeomorphically mapped to a transversal section contained at p
respecting the intersection with plaques. Since p is not isolated, the transversal section
will intersect another point p′ in F ∩ T . Thus, the transversal section at q will intersect
a point q′ ∈ F ∩ T . Since we can shrink the transversal section as much as we want, this
implies that q is not isolated. Hence, F ∩ T is indeed perfect, with empty interior. It is a
result that a non-empty perfect set is necessarily uncountable. Hence, we conclude that
F ∩ T is discrete. It is easy to see that this condition implies that we can find a chart
adapted to F , meaning that F is a submanifold.



CHAPTER 1. REGULAR FOLIATIONS 11

1.2 Holonomy

1.2.1 Introduction and definition

Motivated by the proof of proposition 1.2, we shall define the notion of holonomy. In
this section, we will follow the approach of I. Moerdijk’s book Introduction to foliations
and Lie groupoids, see ([MM], pp.20). To relax some of the notation, we introduce the
following.

Definition 1.6. Let (M,F) be a foliated manifold, and F a leaf of F . Then we say a
path α : I → M is a leafwise path if the image of α is contained in a single leaf. If the
leaf F is specified, we sometimes say α is an F−contained path.

Remark. The notation F−contained path is not standard.

Notation 1.1. If α : I →M is a path from x to y, we sometimes write α : x 7→ y.

We now fix a foliated manifold (M,F) and a leaf F on this foliation. We fix two points
x, y ∈ F . Consider two transversal sections S, T at x and y respectively. We will associate
to any F−contained path α : x 7→ y a germ of a diffeomorphism hol(α) = holS,T (α) :
(T, x) → (S, y), called the holonomy of the path α. Intuitively, these diffeomorphisms
reflect what the behaviour of nearby leaves is, as observed by an inhabitant on the leaf F
as it travels along α. Cover the image of α with a sequence of foliation charts. Then, the
proof of proposition 1.2 yields us the desired diffeomorphism. We now show several small
results regarding this construction.

Figure 1.7: The holonomy of a path α
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1. Is this construction well-defined?
For this, we need to check if the germ of the diffeomorphism depends on the choice
of covering of foliation charts. The construction of the diffeomorphism was done
locally, mapping points from one section to another by identifying points on the same
plaque. Since plaques are independent of chosen chart, as shown by proposition 1.1,
the germ of the diffeomorphism is independent of chosen covering.

2. Is this construction ’stable’?
This means that a small perturbation of a given F−contained path α to another
F−contained path β gives the same germ of diffeomorphism. This is indeed the
case: if the perturbation is small, then α and β can be covered by the same se-
quence of foliation charts, hence giving the same diffeomorphism. In fact, suppose
that α and β are homotopic (as F−contained paths). Then since the construction
is stable under perturbations, it will also be stable under F−contained path homo-
topies, since a homotopy can be seen as a way to go from α to β by continuously
perturbing.
This drastically decreases the amount of possible (germs of) diffeomorphisms ob-
tained via associating to each path α its holonomy holS,T .

3. Concatenation of paths
By our construction, it is quite easy to see that concatenation of paths coincides
with the composition of germs of diffeomorphisms.

4. Choice of transversal section
It is an easy observation that any two transversal sections T, T ′ of F at x are locally
diffeomorphic. The germ of this diffeomorphism is given by hol(ex)

T,T ′ , where ex is
the constant path at x. The dependence of choice of transversals is hence given by

holS
′,T ′(α) = holS

′,S(ey) ◦ holS,T (α) ◦ holT,T
′
(ex).

Above list can be summarised by following result.

Proposition 1.4. ([MM], pp. 23) Given a foliated manifold (M,F), a leaf F of F , a
point x ∈ F and a transversal section T at x, we have a well-defined group homomorphism

holT,T = holT : π1(F, x)→ Diffx(T ),

where Diffx(T ) is the group of germs of diffeomorphisms at x, with f(x) = x for every
such germ. Since evidently Diffx(T ) ∼= Diff0(Rq), we can also write a homomorphism of
groups

hol : π1(F, x)→ Diff0(Rq),

called the holonomy homomorphism of F. This map is determined uniquely up to conju-
gation in Diff0(Rq). We write Hol(F, x) = hol(π1(F, x)).

Remark. By transversal uniformity, the holonomy group of F is independent of choice
of base point, up to a conjugation in Diff0(Rq).

Remark. We can endow the space of leafwise paths with an equivalence relation via
α1 ∼ α2 if and only if hol(α1α2) =Id, where α2 is the reverse of α2. One can easily
define this equivalence relation to homotopy classes of paths. The equivalence class of α,
sometimes denoted [α], is called the holonomy class of α.
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1.2.2 Stability

Let (M,F) be a foliated manifold, with the codimension of F being q = n− dimF . Fix
some leaf F , and a base point x0 ∈ F . Since hol is a group homomorphism from π1(F, x0)
to hol(π1(F, x0)) = H, the kernel K of hol is a normal subgroup of the fundamental group.
Consider F̃ , the covering space of F which corresponds to K. Since π1(F, x0)/K ∼= H,
it follows that H acts freely on F and that F̃ /H ∼= F . We are interested in using this
covering space to discuss the foliation near the leaf F . We first show following lemma.

Lemma 1.2. Let F be a compact leaf with finite holonomy group. Then F̃ is compact.

Proof. Let {Ui} be any open cover of F̃ . Let {Vk} be a covering of F by evenly covered
open sets. Denote by

{
Skl
}

the slices obtained from {Vk}. For each k, there are |H|
amount of slices, which is finite. For a slice

{
Skl
}

, we have an open cover
{
Ui ∩ Skl

}
.

Since the projection map is a local homeomorphism on these slices, this induces an open
covering of Vk. This induces a finer covering of F , which by compactness has a finite
subcovering. This in turns defines a finite subcover of the slice Skl . This can be done for
every k and l. Since both are finite index sets, we are done.

Remaining in the setting where F is some compact leaf with finite holonomy group,
we can define a special transversal section T as follows. Notice that an element of H is the
germ of a locally defined diffeomorphism, defined on some transversal section. Since we
have only finitely many elements in H, we can represent all elements by their holonomy
diffeomorphism by shrinking T . This allows us to formulate the local Reeb stability
theorem.

Theorem 1.1 (Reeb Stability,[Rb]). Let F be a compact leaf whose associated holonomy
group is finite, T a transversal section as above. Then there is a neighbourhood V of F
that is a union of leaves of F and a diffeomorphism of foliated manifolds

F̃ ×H T → V

which identifies the foliation F on V with the foliation on L̃×H T seen in example 1.10.

In other words, in this setting the nearby leaves look like covering spaces of F , whose
fibers are finite, giving us a normal form. It depends only on the leaf F and the holonomy
of this leaf. Combining this with lemma 1.2, we find that for compact leafs F whose
associated holonomy group is finite, nearby leaves must also be compact.

We call the space F̃ the holonomy cover of F , since not only is F̃ a covering space of

F , each element of F̃ can be seen as a holonomy class [α], where α is an F−contained
path from x0 to y.

Remark. A special case of above theorem is when H = 1. This tells us that the foliation
near the leaves looks like the product of the leaf and a small transversal.

In a certain sense, we can look at the holonomy cover of F (relative to some base point
x0) as the set of triples

F̃ = {(x0, y, [α])|α is an F-contained path from x0 to y} .

As shown above, these covering spaces encode a lot of information about the foliation.
However, it is evident that in general we cannot recover any global information from
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these objects. In the following chapter, we discuss how we can fit these spaces together
in a so-called groupoid which is strong enough to discuss the foliation globally whilst still
retaining a lot of favourable properties.

Example 1.12. As an example, we show how the holonomy cover of the central leaf F of
the Möbius foliation looks like. Recall that the holonomy group of this leaf corresponded
to Z/2Z. The holonomy cover is the two-sheeted covering, as seen in figure 1.8.

Figure 1.8: The holonomy cover of the central leaf



Chapter 2

Lie groupoids and Lie algebroids

In this chapter, we discuss Lie groupoids and Lie algebroids. These generalisations of Lie
groups and Lie algebras will be the cornerstones in our study of holonomy. In particular,
we will see that regular foliations are special examples of Lie algebroids. These specific Lie
algebroids can always be integrated to a Lie groupoid, similarly as a Lie group integrates
a Lie algebra. The holonomy groupoid, which gathers all holonomy in a single algebraic
and smooth object, will be an example of a Lie groupoid that integrates the foliation.
Good references for this chapter are [MM],[Gd], [McK],[WdS] and [Mein].

2.1 Groupoids

2.1.1 Definition

As an introduction, we start with an introductory example. Recall that at each base
point x of a topological space X, we have a group π1(X, x) associated to it. In the case
of a path-connected space, this group is sufficient to determine the fundamental group at
every point in the space. However, in general this is not the case. For a space with many
path-connected components, the fundamental groupoid can be of use.

Definition 2.1. [Gd] The fundamental groupoid Π(X) of a topological space X is the
set

{(x, y, [α]) : x, y ∈ X,α : x→ y} ,

where the equivalence class in question comes from path homotopy (i.e homotopies of
paths fixing the endpoints), endowed with the partially defined operation

{(x, y, [α])} ◦ {(y, z, [β])} = {(x, z, [α ∗ β]} .

With this definition in mind, the following definition makes sense.

Definition 2.2. [MM] A groupoid G consists of the following data:

1. A set of objects G0.

2. A set of arrows G1, also called morphisms.

3. Two maps s, t : G1 → G0 called the source and target map.

15
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4. An associative, partially defined multiplication on G1, denoted µ(h, g) or just hg,
which is only defined when s(h) = t(g).

Furthermore, every object x has an associated unit 1x satisfying the property 1t(g)g =
g = g1s(g). Furthermore, every arrow g has an associated inverse arrow g−1 for which
s(g) = t(g−1), t(g) = s(g−1) and gg−1 = 1s(g), g

−1g = 1t(g).

Remark. From associativity of the multiplication, it follows that t(hg) = t(h) and
s(hg) = s(g).

Notation 2.1. There are several sets associated to a groupoid.

G(x, y) = {g ∈ G1|t(g) = y, s(g) = x}

is the set of arrows g : x 7→ y. Notice that G(x, y) = s−1(x) ∩ t−1(y). We can also define

G(x,−) = s−1(x), G(−, y) = t−1(y).

Furthermore, the isotropy group Gx is defined Gx = G(x, x).

Example 2.1. A groupoid with just one object is a group. Indeed, in this case, the
multiplication is defined for all morphisms, and one notices that in this case the morphisms
form a group under this multiplication. Often one says that a groupoid is a ’many-objects’
generalisation of a group.

Example 2.2. The isotropy groups of the fundamental groupoid Π(M) are the funda-
mental groups of the space. This is easily seen: the isotropy groups consist of the paths
ending at its starting point, i.e loops. This shows that the fundamental groupoid is a
generalisation of the usual notion of the fundamental group. In particular, whilst the
fundamental group based at some point x captures only the information of the path
connected component of x, the fundamental groupoid encodes the information for all
connected components at once.

Before continuing, we give a way to intuitively think about groupoids. The idea is to
identify the objects G0 with the unit space 1G. Then, we consider the fibers of the source
and tangent map, see figure 2.1.
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Figure 2.1: A graphical representation of a groupoid

2.1.2 Lie groupoids

At the moment, we have a purely algebraic structure. We now bring it in a smooth
setting.

Definition 2.3. [McK] A Lie groupoid G is a groupoid such that

1. The base manifold G0 is a smooth Hausdorff manifold.

2. The arrow space G1 is a smooth manifold, but might not be Hausdorff.

3. The multiplication, inversion, source and unit map (which maps x to 1x) are all
smooth.

4. The source map (and therefore the target map) are surjective submersions.

Remark. Notice that the unit map is a smooth section of the submersion s. Hence, s ◦u
is the identity on G0, which implies u is an immersion. Furthermore, the unit map is a
homeomorphism onto its image. Hence, its image is an embedded submanifold of G1, and
we denote it by 1G. For this, and many of the following results, it is useful to keep the
graphical representation (figure 2.1) in mind.

As always, we first consider some examples.

Example 2.3. Given any manifold M , we can regard it as a Lie groupoid. Its space of
arrows is 1M , and the source and target map are the identifications 1x 7→ x.

Example 2.4. Let M be a manifold, then another trivial example is the pair groupoid,
denoted M ×M . The elements are pairs (x, y), and the partial multiplication is defined
fully by the equation

(x, y) ∗ (y, z) = (x, z).

The source and target map are the first, respectively the second projection.
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Example 2.5. [MM] A more interesting example comes from the theory of Lie groups.
Suppose G×M →M is a smooth Lie group action. The product manifold G×M can be
seen as a Lie groupoid on M as follows. The source map is the second projection, whilst
the target map is t(g, x) = gx. The unit map is x 7→ (e, x) with e the neutral element of
G. The partial multiplication is defined (g, hx)(h, x) = (gh, x).
This groupoid is denoted G⇒M , and is called the action groupoid of the action. Notice
that it encodes the information of the action.

Example 2.6. The fundamental groupoid is a Lie groupoid.[Gd]

Example 2.7. [MM] Given a submersion p : N → M , we may define the Lie groupoid
Ker(p) with arrows Ker(p)1 = N ×M N and objects N . The (fiberwise) multiplication
is analogous to the multiplication of the pair groupoid, and in fact is a subgroupoid of
Pair(M).

In the remainder of this section, we look at some basic results about Lie groupoids.
These results, including the proofs, come from [MM].

Proposition 2.1. [MM] The fibres G(x,−) and G(−, x) are embedded submanifolds.
The natural action of Gx on G(x,−) is free and transitive along the fibres of t|G(x,−) = tx.

Proof. The proposition consists of two parts. The first part follows from the regular value
theorem. For the second part, the action is given by a right multiplication. To show that
the action is transitive along tx−fibres, choose any α : x → y and β : x → y. Consider
the arrow α−1β : x → x. By definition, this lies in the isotropy group. By construction,
right multiplication of α with this arrow gives β, implying the action is indeed transitive.
For the action to be free, suppose αβ = α with α any arrow in a fibre of tx and β an
element of the isotropy group. Then evidently, α−1αβ = 1x, which implies β = 1x.

Proposition 2.2. [MM] Let G be a Lie groupoid, and let x, y ∈ G0. Then G(x, y) is an
embedded submanifold of G.

Proof. Consider the vector spaces Eg = ker(ds)g∩ker(dt)g for all g ∈ G. It is clear from the
regular value theorem that, at each point g of G(x, y), the tangent space should be Eg. To
show that G(x, y) is indeed a submanifold, we first show that E|G(x,−) is a distribution on
G(x,−). For this, we have to show that the dimension of Eg is constant for all g ∈ G(x,−)
and that Eg varies smoothly on G(x,−). We fix an element g ∈ G(x,−). Associated to
this is the diffeomorphism Lg : G(−, x)→ G(−, t(g)), which is the left multiplication by g.
We claim that (dLg)1x(E1x) = Eg. Notice that this map is well-defined: let h ∈ G(−, x),
then Eh = ker(dt)h ∩ ker(ds)h ⊂ ker(dt)h = Th(G(−, x)). Since Lg is constant on the
fibers of s, we furthermore find s ◦ Lg = s|G(−,x). Since Lg is a diffeomorphism, we find
that (dLg)1x(E1x) = Eg, showing that they are of the same dimension. However, this also
allows us to show that Eg varies smoothly for g ∈ G(−, x): it suffices to choose a local
basis e1, ..., en of E1x and extend it to a global frame via the diffeomorphisms dLg. Thus,
Eg is indeed a subbundle of G(x,−). Notice that this subbundle is exactly the kernel
of dt|G(x,−). By what we have just shown, the rank of this map is constant. Hence, the
fibre t−1x (y) is an embedded submanifold. But this is exactly G(x, y), showing the desired
result.

Remark. Notice that this also implies that Gx, the isotropy group, is a Lie group.
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2.2 Lie Algebroids

2.2.1 Introduction

A Lie algebra is seen as an infinitesimal approximation of a Lie group. In this section,
we want to look at the analogous structure, called the Lie algebroid, of a Lie groupoid.
Later, we shall see that this infinitesimal approximation is a natural extension of viewing
an integrable subbundle as the infinitesimal approximation of a foliation. In this section,
we use the same approach as [MM].

In the construction of a Lie algebra from a Lie group, we crucially needed the fact that
for each g, right translation is a diffeomorphism of G. However, the action of an arrow
h : x 7→ y is not everywhere defined. What we do get, however, are diffeomorphisms
Rh : s−1(y) → s−1(x), coming from the right multiplication. In this case, dRh is an
isomorphism from ker(ds)y to ker(ds)x. In general, this procedure gives rise to a right
action of the Lie groupoid G on the vector bundle ker(ds) = T s(G1). Indeed, given any
ξ ∈ (T sg (G1)) and any h ∈ G1 composable with g (i.e t(h) = s(g)), we can define

µ(ξ, h) = dRh(ξ) ∈ T sgh(G1).

Notice that dRh(ξ) ∈ T sgh(G1) since the image of Rh is contained in the fiber s−1(x). Now
that we know what vectors we want to work with, we can simply define a right invariant
vector field to be a section of the bundle ker(ds) (seen as a subbundle of the tangent
bundle) such that for all composable g, h:

µ(X(g), h) = X(gh).

We denote this space by Xs
inv(G1). We denote by Xs(G1) the vector fields tangent to the

fibers. Notice that Xs
inv(G1) ⊂ Xs(G1).We look at some properties of above construction.

Proposition 2.3. [MM] For a Lie groupoid G, we have

1. Xs(G1) and Xs
inv(G1) are Lie subalgebras of X(G1).

2. The right-invariant vector fields Xs
inv(G1) are t−projectable. The map dt : Xs

inv(G1)→
X(G0) is a homomorphism of Lie algebras.

Remark. Recall that a vector field x is t−projectable if and only if dt(X) is constant on
the fibers of t.

Proof. Consider the vector bundle T s(G1), which consists of the vectors that are tangent
to the source-fibers s−1(x) for all x. Since these fibers are closed submanifolds, these
vector fields are closed under the Lie bracket. Thus Xs(G1) is a Lie subalgebra of X(G1).
Suppose now that g, h are two composable arrows. Choose two right-invariant vector fields
X, Y ∈ Xs

inv(G1). Recall that the Lie bracket of Rh−related vector fields are Rh−related.
Since, by definition, a right-invariant vector field is Rh−related to itself, it follows that
dRh([X, Y ])g = [dRh(X), dRh(Y )]gh. Since X, Y were by assumption right-invariant, the
result follows. This shows item (1), let us now consider item (2). Let h ∈ G(x, y) be any
arrow, then

dt(Xh) = dt(dRh(X1x)) = dt(X1x).

Here, we used the fact that (t ◦ Rh)(g) = t(g), i.e t is invariant under the right action.
The final statement now easily follows.
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Recall that in the case of Lie groups, we had a bijection from the right-invariant
vector fields and the tangent vectors at the unit. This is done via Xg = (Rg)∗(Xe).
Analogously, we can fully determine the values of a right-invariant vector field in the
case of Lie groupoids if we know the tangent vectors on the set of units, i.e {1x|x ∈ G0}.
Hence, we are interested in a vector bundle on G0 (which is diffeomorphic to the set of
units) that assigns to each point a vector in T s(G1). This is given by the pull-back of the
following diagram:

g T s(G1)

G0 G1

π π

x7→1x

We regard g as the vector bundle over M whose fiber over a point x is T s1x(G1). Then,
we can identify Γ(g) with Xs

inv(G1), i.e they are isomorphic. Pulling back the Lie algebra
structure on Xs

inv(G1), this is even a Lie algebra isomorphism.
We can naturally look at the derivative of the target map as a map from g to T (G0).

This gives us a vector bundle homomorphism # : g → T (G0). At the level of sections,
this gives us a homomorphism of Lie algebras (again denoted by #) # : Γ(g)→ X(G0).
By construction, this corresponds to the projection of Xs

inv(G) as above.
The vector bundle g over G0 we just constructed is called the Lie algebroid of the Lie

groupoid G. For a graphical representation, see figure 2.2. This is a special case of a more
general definition of a Lie algebroid, which is the content of next section. These graphical
representations are based on the ones found in ([WdS], section 7).

Figure 2.2: A graphical representation of the Lie algebroid associated to a Lie groupoid
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2.2.2 Definition and examples

We start by giving the definition of a Lie algebroid.

Definition 2.4. [MM] Let M be a smooth manifold. A Lie algebroid over M is a vector
bundle π : A→M , together with a vector bundle map (called the anchor map) # : A→
TM and a real Lie algebra structure [, ] on its space of sections Γ(A) such that

1. The induced map of sections # : Γ(A)→ X(M) is a Lie algebra homomorphism.

2. The Leibniz identity

[X, fY ] = f [X, Y ] + #(X)(f)(Y )

holds for any X, Y ∈ Γ(A) and f ∈ C∞(M).

We now give some examples. These examples can be found in [MM].

Example 2.8. Recall that a Lie group could be seen as a Lie groupoid over a single
object. It would therefore be natural for the Lie algebroid of this Lie groupoid to coincide
with the Lie algebra of the Lie group. This is indeed the case, notice that A is a vector
bundle over one point (which can naturally be seen as a vector space) together with a Lie
algebra on its space of sections. A section on this Lie algebroid corresponds to assigning
a vector to 1x, which corresponds to the unit of the Lie group. Thus, the space of sections
coincide with the tangent space of G at the unit, which is exactly the Lie algebra of
G. Indeed, notice that the (only) s−fibre is the whole space, and hence all vectors are
tangent: T s(G1) = TG1.

Example 2.9. Vector bundles can be seen as a special case of Lie algebroids, with trivial
Lie algebra structure on the sections and zero anchor.

Example 2.10. Just like in the case of Lie groupoids, a manifold can be made into a Lie
algebroid, by considering the bundle {0}×M with trivial anchor map. This Lie algebroid
is integrated by the Lie groupoid we saw in example 2.1. This Lie algebroid corresponds
to the unit Lie groupoid.

Example 2.11. A foliation F on a smooth manifold M is a special case of a Lie alge-
broid. The vector bundle A is given by the distribution, the anchor map is the inclusion.
Notice that in this case, since the distribution is involutive, it inherits naturally the Lie
algebra structure of X(M). In the opposite direction, suppose one has a Lie algebroid A
with injective anchor map # : A→ TM . Then, one can identify A with #(A), which by
definition of a Lie algebroid is a subbundle of TM . Since # is a Lie algebra homomorph-
ism, this vector bundle is furthermore involutive. Therefore, the image of a Lie algebroid
with injective anchor map gives rise to a foliation.

Notice that in the first three examples, the Lie algebroids given came from Lie groupoids.
A Lie algebroid that comes from a Lie groupoid is called integrable. It is not true that
every Lie algebroid comes from a Lie groupoid. For an example of this, see section 6.3.2.
A natural question is whether a foliation which by above can be viewed as a Lie alge-
broid is integrable. The answer to this question is positive. In the next section, we will
construct two (in general different) Lie groupoids that integrate such foliations F .
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Example 2.12 ([WdS],[MM]). Another nice example comes from the theory of Lie al-
gebra actions. Recall that a Lie algebra action of a Lie algebra g on M is a Lie algebra
homomorphism

γ : g→ X(M).

We can endow the trivial bundle g ×M with a Lie algebroid structure as follows. The
anchor map is defined

#(α, p) = γ(α)p.

The Lie bracket is defined

[u, v](x) = [u(x), v(x)] + (γ(u(x))(v))(x)− (γ(v(x))(u))(x),

where u, v ∈ C∞(M, g×M) and x ∈M . This Lie algebroid is called the
transformation Lie algebroid of the action of g on M . We denote this Lie algebroid by
g n M . Recall that any Lie group action induced a Lie algebra action. In this case,
one can show that the Lie algebroid g×M associated to this infinitesimal action can be
integrated by the action Lie groupoid G ⇒ M . In fact, it was shown by Dazord (see
[Daz]) that any transformation Lie algebroid is integrable.
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2.3 The holonomy and monodromy groupoids

In this section, we construct two groupoids which correspond to the foliation. Recall that
in the introduction, we briefly mentioned the fact that the equivalence relation R induced
by a foliation need not be smooth. What we mean by this is that

R = {(x, y)|x, y lie on the same leaf} ⊂M ×M

is not an immersed Lie subgroupoid of M ×M (recall that M ×M could be seen as a Lie
groupoid, called the pair groupoid Pair(M)).

The question is now: can we find a Lie subgroupoid of Pair(M) whose orbits induce
the foliation? The answer is yes, but in fact we know more: the Lie subgroupoid we
shall construct will be the smallest (see [MM2]) Lie groupoid inducing the foliation on
M . This is the holonomy groupoid. We will also discuss its homotopic sibling, called the
monodromy groupoid. The objects of the groupoids will be points on the manifold, and
the arrows will consist of leafwise paths.

Definition 2.5. [MM] Let (M,F) be a foliated manifold. Define the groupoid Mon(M,F)
to be the groupoid over M whose arrow space is

Mon(M,F)(x, y) = {[γ]|γ : x 7→ y a leafwise path} .

Here, the equivalence class is given by path-homotopy (i.e fixing endpoints) with respect
to leafwise paths. Similarly, we define the groupoid Hol(M,F) to be the groupoid over
M whose arrow space

Hol(M,F)(x, y) = {[γ]|γ : x 7→ y a leafwise path} ,

but here the equivalence relation is given by holonomy. The partially defined multiplica-
tion is the one coming from concatenation of paths.

We have to show that these groupoids can be endowed with a smooth structure such
that they are Lie groupoids. The following proposition and proof can be found in ([MM],
prop. 5.6).

Proposition 2.4. [MM] The holonomy and monodromy groupoids are Lie groupoids.

Proof. We will prove this for the monodromy groupoid. The construction for the holonomy
groupoid is completely analogous. We are going to construct a smooth atlas for the arrow
space. Given any point (x, y, α), we need to find a neighbourhood W at (x, y, α) and a
diffeomorphism f : W → RN in such a way that the smooth maps are compatible as local
charts. Furthermore, this construction needs to be independent of chosen representative
at the level of homotopy. Let (φ, U) and (ψ, V ) be foliation charts around x and y
respectively. By shrinking U if necessary, we can assume that the images of these charts
are of the form A × C and B ×D, where A and B are open subsets of Rk and C,D are
open subsets of Rn−k. Here, k is taken to be the dimension of the foliation. We shrink
the domains of the charts if necessary to obtain that A,B,C and D are all connected
and simply connected. We write x = φ(a, c) and y = ψ(b, d). Notice that then, S =
φ−1({a}×C) and T = φ−1({b}×D) are transversal sections through x and y respectively.
Let γ be a representative of the F−contained path homotopy class α. This induces a
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holonomy transformation holS,T (α), which can be realised as a diffeomorphism from S to
T by shrinking the transversal sections if necessary. By the construction of the holonomy
transformation, one can associate to each leaf F ′ intersecting S an F ′−contained path
which is unique up to homotopy. Indeed, it suffices to consider any path in the plaque
connecting the intersection points, and concatenating these paths together. Hence, we
can define a map H : [0, 1] × S → M such that H|{0}×S = IdS and H|{1}×S = holS,T (γ)
and H(t, z) is a leafwise path for each z. Intuitively, this map slides S along the leaves
towards T , following γ. This allows us to define a map

f : A×B × C → Mon(M,F)1

as follows. For any triple (a′, b′, c′), we consider a leafwise path ν1 from φ−1(a′, c′) to
φ−1(a, c′), thus bringing the points on every plaque to the intersection of the plaque with S.
Then, we consider any path ν2 from φ−1(a, c′) to ψ−1(b, d′) described by H(−, φ−1(a, c′)).
Finally, we let ν3 be any path from φ−1(b, d′) to φ−1(b′, d′). By construction, each of these
paths are leafwise paths. Hence, the homotopy class of their concatenation is an element
of Mon(M,F)1. Notice that f is injective, so f is a bijection onto its image. We take the
sets that are obtained this way as a basis of open sets for a topology on Mon(M,F)1. One
can show that these type of maps f form a smooth chart on Mon(M,F)1, which makes
it into a Lie groupoid.

Remark. Let us consider some of the associated sets of these Lie groupoids. First, given
x ∈M , notice that the isotropy group Mon(M,F)x is nothing else than π1(F, x), with F
the leaf containing x. Analogously, we have Hol(M,F)x = Hol(L, x).
Furthermore, notice that Mon(M,F)(x,−) corresponds to the set of triples (x, y, [α]),
where α is an F−contained path from x to y. This corresponds to the universal covering
space of F , and thus the map sending sending a homotopy class of paths to its associated
holonomy class restricts to the universal covering map. Analogously, the source fibre for
the holonomy groupoid coincides with the holonomy covering of the leaf F , and the target
map hence restricts to the holonomy covering projection.

Proposition 2.5. [MM] The orbits of the monodromy groupoid and the holonomy
groupoid are exactly the leaves of F .

Proof. Let us prove this result for the monodromy groupoid. The proof for the holonomy
groupoid is analogous. Fix some point x ∈ F , where F is a leaf of F . Let y be any other
point on F . We have to show that there exists an element α ∈ Mon(M,F) such that
s(α) = x and t(α) = y. This just follows from the fact that the leaves are path-connected
spaces. Hence, t(G(x,−)) = F .

Proposition 2.6. [MM] The isotropy groups of the monodromy and holonomy groupoids
of (M,F) are discrete groups.

Proof. This is immediate from the construction.

Proposition 2.7. The Lie algebroids of the Lie groupoids Hol(M,F) and Mon(M,F)
can both be identified with the Lie algebroid associated to the foliation.

Proof. For any given x ∈M , the source fibre is the holonomy cover of the leaf F containing
x with holonomy projection t. Thus, the anchor map #(ξ) = dt(ξ) maps gx bijectively
onto the vectors tangent to the leaf F . Therefore, we can interpret the vector bundle g
as the distribution of our foliation, which is what we wanted to show.
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To finish this chapter, we look at some examples of holonomy and mondromy groupoids.

Example 2.13. Consider the foliation of the Möbius band M . This foliation came from
the action of S1 onto M which wrapped S1 around M twice.
As one can expect, the holonomy groupoid in this case coincides with the action groupoid
S1 ⇒M .

Example 2.14. Consider the trivial foliation of a manifold with a single leaf M . Then
we find

Mon(M,F) = Hol(M,F) = M ×M.

Example 2.15. Recall that in the definition of Lie groupoids, we did not require the space
of arrows to be Hausdorff. This might seem surprising, but we now mention an example
that showcases that these arise naturally in our context. Consider the punctured space
R3 \ {(0, 0, 0)}. This can be foliated using horizontal planes, each one is diffeomorphic
to each other (and in particular diffeomorphic to R2) except for the leaf at z = 0, which
is diffeomorphic to R2 \ (0, 0). Consider the monodromy groupoid. At every leaf away
from the central leaf, this is trivial since the spaces are homotopy equivalent to a point.
Consider a sequence of loops γn at height z = 1/n. The limit of this sequence is not
unique, see figure 2.15. There, one sees that the loop around the x = y = 0−axis has as
a limit a loop around the origin (and hence is not contractible), whilst the sequence of
points has as limit the corresponding point on the z = 0-plane. This example gives us an
example of where the monodromy groupoid fails to be Hausdorff.

Thus, for each foliated manifold (M,F) we have found a Lie groupoid that ’integrates’
the foliation. In the next chapters, we will extend this idea to a more general case.



Chapter 3

Singular Foliations

Whereas regular foliations can be seen as a decomposition of a manifold into leaves of the
same dimension, a singular foliation may exhibit leaves of different dimensions. This new
type of foliation is not pathological: they arise naturally in many different contexts. One
example comes from the theory of Lie algebroids: recall that a Lie algebroid whose anchor
was injective gave rise to regular foliations. Dropping this injectivity condition, one still
gets a partition but this time the dimension of the leaves can change. This type of Lie
algebroid pops up when studying group actions, but also in topics like Poisson geome-
try. In this chapter, we will talk about the basic theory surrounding singular foliations.
Relevant sources are [DZ],[Gd],[W],[AS], [WdS], [AZ] and [AZ2].

3.1 Introduction

3.1.1 Definition and examples

Most of the following definitions and results can be found in [AS].

Definition 3.1. [AS] Let M be a smooth manifold. A (singular) foliation F is a locally
finitely generated C∞(M)−submodule of C∞c (M,TM), the compactly supported vector
fields, that is stable under the Lie bracket.

Remark. Notice that, instead of working with subbundles of the tangent bundle (as we
did in the case of regular foliations) we look at submodules of the sections of the tangent
bundle.

We recall what it means for a submodule to be finitely generated.

Definition 3.2. [AS] A submodule F ⊂ C∞c (U, TU) is said to be finitely generated if we
can find X1, ..., Xn ∈ C∞(U, TU) such that F = C∞c (U)·X1+...C∞c (U)·Xn. A submodule
F ⊂ C∞c (M,TM) is said to be locally finitely generated if, for every x ∈M , one can find
a neighbourhood U of x such that {X|U : X ∈ F , support(X) ⊂ U} is finitely generated.

Remark. From this point onward, when we talk about a foliation F we mean a singular
foliation.

To measure how singular a foliation is near a point, we define the following.

26
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Definition 3.3. [AS] Let (M,F) be a foliated manifold. For any x ∈M , one defines the
maximal ideal

Ix = {f ∈ C∞(M)|f(x) = 0} .
One defines the tangent space of the leaf of F at x by Fx = {evx(X)|X ∈ F}, which is a
subset of TxM . The fibre of F at x is defined Fx = F/IxF .

As shown in [AZ3] and [AS],we have a map evx : F → TxM , which vanishes on IxF .
Hence, this map drops down to a surjective morphism ex : Fx → Fx. The kernel of evx,
i.e all vector vector fields X ∈ F such that X(x) = 0, is a Lie subalgebra of F . We
denote this Lie subalgebra by F(x). Notice that IxF is a Lie ideal of F(x), from which
it follows that F(x)/IxF is a Lie algebra gx, called the infinitesimal isotropy of F at x.
Furthermore, we have following short exact sequence of vector spaces:

0 gx Fx Fx 0
evX

We now show how these concepts measure how singular the foliation near a point is. The
following results and their proofs can be found in ([AS], prop. 1.5).

Proposition 3.1. [AS] Let (M,F) be a foliation, and fix a point x ∈M . Let X1, ..., Xk ∈
F be vector fields such that their images in Fx form a basis of Fx. Then these vector
fields span F in a neighbourhood U of x.

Proof. By definition, we can take a generating set Y1, ..., YN in F , which generate F in
U1. By assumption, one can write the image of each Yl in Fx as the linear combination∑k

i=1 νl,iXi. In particular, Yl −
∑k

i=1 νl,iXi is an element of IxF . Using the fact that

the Yj generate, we can find functions αj,l in Ix such that Yi −
∑k

i=1 νl,iXi =
∑N

j=1 αi,jYj

for some neighbourhood of x. Thus, we have the equality
∑k

i=1 νl,iXi =
∑n

j=1 βi,jYj for
βi,j = δi,j − αi,j. In matrix form, we find

ByY (y) = AyX(y).

Notice that the off-diagonal arguments of B vanish in x, whilst the diagonal elements are
1. Hence, Bx = Id, and since the determinant is continuous we can find a neighbourhood
U where B is invertible. However, this implies that each Yj can be written as a linear
combination of the Xi, from which the result follows.

Remark. Notice that in the proof, we have proved that the dimension of Fx gives us the
minimal amount of generators needed to generate F near x.

Proposition 3.2. [AS] The dimension of Fx is upper semi-continuous, and the dimension
of Fx is lower semi-continuous. Recall that a function f is upper semi-continuous at x0
if for every y > f(x0), we can find a neighbourhood U of x0 such that f(x) < y for all
x ∈ U .

Proof. By previous proposition, we have a neighbourhood U of x which is generated by a
set of dimFx generators. This gives an upper bound of the amount of generators needed,
and hence an upper bound for dimFy for y ∈ U . This is the desired neighbourhood in
the definition of semi upper-continuity. For the second part of the proposition, we have
that (using the notation of the proof of previous proposition) Fy is spanned by the vectors
Y1(y), ..., YN(y). Thus, the dimension of Fy is the rank of the matrix T (y) spanned by the
Yj(y). Recall that the rank of a continuous map y 7→ Ty is lower semi-continuous, from
which the result follows.
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This gives us some topological insight for leaves. We first need some terminology.

Definition 3.4. [AZ3] Let (M,F) be a foliated manifold. A leaf F is regular if there is
a neighbourhood U around F for which every leaf F ′ intersecting U , F and F ′ have the
same dimension. A leaf that is not regular is called singular.

Using this terminology, we find that the set of regular leaves is dense and open.

Example 3.1. To avoid confusion, consider the foliation f ∂
∂x

on R, where f is a function
vanishing in x ≤ 0, but f(x) > 0 for every x > 0. Then the origin is the only singular
leaf of the foliation. Hence, being a singular leaf is relative only to nearby leaves, not to
the global foliation.

We now look at some examples of singular foliations.

Example 3.2. Given any globally defined vector field X, the submodule it spans is a
singular foliation. The associated partition of the manifold comes from the integral curves
of X.

Example 3.3. Consider the action of S1 on R2. This Lie group action is infinitesimally
generated by the rotational vector field x∂y − y∂x. The induced partition of R2 is shown
in figure 3.1. The submodule generated by this vector field is easily seen to be a singular
foliation. In general, any Lie group action gives rise to a singular foliation. The associated
partition comes from the orbits of the Lie group action.

Figure 3.1: The partition due to the action of S1 on R2

Example 3.4. ([AS], ex. 1.3.1) Let # : A → TM be a Lie algebroid. Recall that
when the anchor map was taken to be injective, one had that #(C∞(A, TM)) was a
regular foliation. We now claim that in the general case, FA := #(C∞(A, TM)) is a
(possibly singular) foliation. For this, notice that the sections of a vector bundle are
always locally finitely generated. Since the anchor map on the space of sections is a Lie
algebra homomorphism, it preserves the bracket. Hence, the image is indeed a locally
finitely generated submodule, stable under the Lie bracket. Hence, to any Lie algebroid
there is an associated singular foliation. In particular, any Lie groupoid gives rise to a
singular foliation, since every Lie groupoid has a corresponding Lie algebroid.

Example 3.5. Any regular foliation is a singular foliation. Indeed, it is easy to see that
the sections of the defining distribution satisfy all the necessary properties.
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3.1.2 Basic results

Let F be a foliation on M , and let g : M → N be a diffeomorphism. Recall that this
induces an isomorphism of modules: g∗ : C∞c (M,TM)→ C∞c (N, TN), associating to each
vector field on M its unique g−related vector field on N .

Proposition 3.3. [AS] Consider the setting above, then the image of F under g∗ is a
foliation of N . Furthermore, we have

g∗(F)g(x) ∼= Fx

for each x ∈M .

Proof. Evidently, the module g∗(F) is locally finitely generated by the images of local
generators of F . Using the basic result about Lie brackets of g−related vector fields,
involutivity easily follows. Hence, g∗(F) is indeed a foliation on N . By definition of g,
we easily find that (g∗(F ))g(x) = dgx(Fx). The result then follows from the fact that
g∗(IxF) = Ig(x)g∗(F).

Hence, foliations are well-behaved under diffeomorphisms. This allows us to compare
foliations. There are two important groups of diffeomorphisms.

Remark. Recall that for a vector field X, we denoted by expX its time-1 flow. In the
setting of singular foliations, all vector fields considered have compact support. Hence,
their flow is globally defined.

Definition 3.5. [AS]

1. The group Aut(M,F) of diffeomorphisms of M such that g∗(F) = F for all g ∈
Aut(M,F).

2. The group expF generated by expX for X ∈ F .

An important result, whose statement and proof can be found in [AS], is that expF
is actually a (normal) subgroup of the automorphism group Aut(M,F). An alternative
proof can be found in [YG].

Proposition 3.4. [AS] The group expF is a normal subgroup of Aut(M,F).

Recall that in the case of regular foliations, flowing along the generators of the distri-
bution traced out the leaves of the foliation. This idea can be extended.

Definition 3.6. [AS] The leaves of a singular foliation F are the orbits of the natural
action of expF on M .

Following proposition tells us that it makes sense to talk about the dimension of a
leaf, and furthermore that the dimension of the fiber is also constant along the leaf.

Proposition 3.5. [AS] Let x, y be two points on the same leaf L of a foliated manifold
(M,F). Then dimFx = dimFy, and dimFx = dimFy. In particular, dimFx and dimFx
are constant on the leaves.
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Proof. By definition, we can find a diffeomorphism gin expF such that g(x) = y. By the
proof in proposition 3.3, Fy = dg(Fx). Since g is a diffeomorphism, dg is an isomorphism.
Again, by proposition 3.3, Fx and Fy are isomorphic.

The following result can be found in [AZ3].

Proposition 3.6. [AZ3] Let L be a leaf of F . Then the infinitesimal isotropy g is constant
(up to isomorphism) along leaves. Furthermore, the Lie algebra is trivial if and only if L
is regular.

Proof. We first show the first statement. Let x, y be two points on L. Let g be diffeo-
morphism in expF satisfying g(x) = y. It suffices to show that g∗(F(x)) = F(y), which
follows immediately from the fact that g preserves the foliation.

Let us now show the second statement. Assume that this Lie algebra is trivial at some
point x ∈ L (and hence on the whole of L). Let U be a neighbourhood around x, in which
F is generated by X1, ..., Xk. Here, we take k = dimFx so this generating set is minimal
by proposition 3.1. Shrinking U if necessary, lower semi-continuity of Fx implies that
dimFx ≤ dimFy for all y ∈ U . Suppose for the sake of contradiction that this inequality
is sharp. Since the image of the vector fields X1, ..., Xk at each y ∈ U is exactly Fy,
the inequality tells us that dimFx < k. Thus, there is a (non-trivial) linear combination∑k

i=1 aiXi(x) = 0. We can extend this to a vector field Y =
∑k

i=1 αiXi, where αi(x) = ai.
This vector field vanishes in x and lies in F , which implies Y ∈ F(x). By assumption, it
thus holds that Y ∈ IxF . Thus under the quotient map F(x)→ Fx , which is

∑
ai[Xi], Y

gets mapped to 0 . Since the [Xi] form a basis of Fx (due to the minimality condition), it
must hold that all ai = 0, which yields the desired contradiction. For the other direction,
suppose L is a regular leaf. By definition, we can find an open neighbourhood around
x ∈ L such that each leaf intersecting L has the same dimension. It is easy to see that a
minimal generating set in this neighbourhood will be linearly independent at x, hence F
is generated by independent nowhere vanishing vector fields near x. This readily implies
that F(x) = IxF .

3.2 Transversal maps

Recall that in the case of regular foliations, we could pull back foliations along transversal
maps. This can also be done in the case of singular foliations. For this, we first recall the
definition of the pull-back of a module. Most of the information can be found in [Gd] and
[AS].

Definition 3.7. [Wk] Let ϕ : N →M be a smooth map. Let E
π−→M be a vector bundle

on M . Then the pull-back bundle ϕ∗(E) is the pull-back of the square

ϕ∗(E) E

N M

π π

ϕ

In other words, the pull-back bundle is defined by

ϕ∗(E) = {(n, e) ∈ N × E|ϕ(n) = π(e)} ⊂ N × E.
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It is a vector bundle over N . Furthermore, if S is a submodule of the module of sections
C∞(M,TM), the pull-back module ϕ∗(S) is the submodule of the module of sections
C∞(N,ϕ∗(E)) generated by f · ϕ∗(ξ) with f ∈ C∞(N) and ξ ∈ S.

Definition 3.8. [AS] Let M,N be manifolds and f : N → M a smooth map. Suppose
F is a foliation on M .

1. The pull-back of F , denoted f−1(F), is the submodule

f−1(F) = {X ∈ C∞c (N, TN)|df(X) ∈ f ∗(F)}

of C∞c (N, TN).

2. We say that f is transverse to F if

f ∗(F)⊕ C∞c (N, TN)→ C∞(N, f ∗(TM)) : (ξ, ν) 7→ ξ + df(ν)

is onto.

This definition has a more familiar pointwise counterpart. Following proposition re-
lates the notion of transverse maps to the previously defined notion for regular foliations
(see definition 1.5).

Proposition 3.7. [Gd] Let φ : M → N be a map to a foliated manifold (N,F). Then
this map is transverse to F if and only if dφx(TxN) + Fφ(x) = Tφ(x)M , for all x ∈ N .

Proof. First, assume that φ t F . Fix some x ∈ N . Let y ∈ TxM , then we need to show
that there exists vector fields Xφ ∈ C∞c (N, TN) and XF ∈ F such that dφ(Xφ)(x) +
XF(x) = y. Extend y to some vector field Y on M . Then, we can view Y ◦ φ as a map
from N to TM , which we view as a section XY of the vector bundle C∞c (N, φ∗(TM)). By
transversality, we know that there exists a pair XF and Xφ such that dφ(Xφ)+XF = XY .
Thus, evaluating in x gives us the desired result. For the other direction, assume that
the map is not transversal. Let ξ be a section in C∞c (N, φ∗(TM)) that does not lie in
the image of the map in the definition of transversality. For any point x ∈ M , choose a
basis X1, ..., Xn of Fx, which we extend to local generators of F in some open U . Since
φ is continuous, φ−1(U) is open. By shrinking if necessary, we can obtain a local frame
of TN in φ−1(U). The image of this frame under dφ generate the image of dφ. Since ξ
is compactly supported, we can cover the support by finitely many opens Uj such that
F|Uj

is finitely generated for each Uj. For the sake of contradiction, suppose that we can
decompose Tφ(x)M for all x as in the proposition. Then, in any of the open subcovers, the
local generators of F together with the image of the local frames of TN span the whole of
TM |Uj

for each j. However, this would imply that in each Uj, we can write ξ|Uj
in terms

of these. Using a partition of unity subordinate to our cover, this would contradict the
assumption.

Following results regarding pullback foliations are the contents of proposition 1.10 and
proposition 1.11 in [AS].

Proposition 3.8. [AS] Let M,N be two manifolds, f : M → N smooth and F a foliation
on M .
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1. The C∞(N)−module f−1(F) is stable under Lie brackets

2. If f is transverse to F , f−1(F) is locally finitely generated.

Proof. The first part of the proposition is a straightforward calculation. For the second
part, by the local nature of the statement we are allowed to restrict ourselves to small
opens in M and N . Since F is locally finitely generated, we can choose a small open
neighbourhood W around every f(x) such that F is finitely generated when restricted to
this open. Choosing V and U opens in N,M respectively (where U is chosen as a subset
of W ) small enough, we may assume that the vector bundles TN → N and TM →M are
trivial bundles. Since the pullback of a trivial vector bundle is again trivial, the vector
bundle f ∗(TM)→ N is again trivial. Notice that the submodule f−1(F) can be described
by the fibered product

C∞c (N, TN)×C∞c (N,f∗(TM)) f
∗(F).

Using Serre-Swan ([Sw]), one has that trivial vector bundles correspond to projective mod-
ules which implies in particular that C∞c (N, f ∗(TM)) is a projective module. Therefore,
in the short exact sequence

0 K C∞c (N, TN)⊕ f ∗(F) C∞c (N, f ∗(TM)) 0

the surjective function splits. Thus, we can find a section s : C∞c (N, f ∗(TM)) →
C∞c (N, TN) ⊕ f ∗(F). Notice that we can identify K with f−1(F). However, we can
also identify K with the quotient (f ∗(F)⊕C∞c (N, TN))/s(C∞c (N, f ∗(TM))): Any (α, β)
in the quotient gets mapped to (the class of) (α, β), and in the opposite direction: suppose
ξ = α + df(β), then (α, β)− s(ξ) lies in K. Thus,

f−1(F) ∼=
f ∗(F)⊕ C∞c (N, TN)

s(C∞c (N, f ∗(TM)))
,

which is a quotient of a finitely generated module and hence finitely generated.

Proposition 3.9. [AS] Let M,N be two manifolds, and F a foliation on M . Suppose
that φ : N →M is a smooth map, transverse to F . Denote by FN the pull-back foliation
on N .

1. For all x ∈ N , we have (FN)x =
{
ξ ∈ TxN |dφx(ξ) ∈ Fφ(x)

}
.

2. Let P be a manifold, and ψ : P → N a smooth map. The map ψ is transverse to
FN if and only if φ ◦ψ is transverse to F , and furthermore we have (φ ◦ψ)−1(F) =
ψ−1(FN).

Proof. We shall prove only (1). Let ν ∈ (FN)x. Let X ∈ FN such that X(x) = ν. Then
(dφ)x(X(x)) = (dφ)x(ν) ∈ Fφ(x).

Suppose that ξ ∈ TxN such that dφx(ξ) ∈ Fφ(x). Let X ∈ C∞c (N, TN) such that
X(x) = ξ. Consider dφ(X),which is an element of C∞c (N, φ∗(TM)). By transversality,
we can find Z ∈ C∞c (N, TN) and Y ∈ φ∗(F) such that dφ(Z) + Y = dφ(X). Since
dφ(ξ) ∈ Fφ(x), we may assume that Y (x) = dφx(ξ), and thus that Z(x) = 0. By linearity
of the differential, one finds that dφ(X −Z) = Y . In other words: X −Z ∈ φ−1(F). But,
by construction, (X − Z)(x) = ξ. Therefore, ξ ∈ (FN)x. This proves (1).



CHAPTER 3. SINGULAR FOLIATIONS 33

3.3 The local picture

In the case of Poisson structures, locally every Poisson structure splits in two ”parts”: its
singular part and its regular part (i.e its symplectic part). This holds also for singular
foliations. In this section, we shall prove a weaker result, whose statement and proof can
be found in ([AS], prop. 3.10).

Proposition 3.10. [AS] Let (M,F) be a foliated manifold, and let x ∈ M . Denote
k = dimFx, and q = dimTxM − k.

1. There exists an open neighbourhood W of x in M , a foliated manifold (V,FV )
of dimension q and a submersion φ : W → V with connected fibers such that
FW = φ−1(FV ), where FW is the restriction of F to W .

2. The tangent space of the leaf of (V,FV ) at the point φ(x) is 0, we have ker(dφ)x = Fx
and each fiber of φ is contained in a leaf of (M,F).

Proof. We first prove (1) via induction on k. For the base case, if k = 0, it suffices to take
φ as the identity on M . Suppose that the induction hypothesis holds for all j up to k−1.
Since k 6= 0, there is a non-zero vector ξ ∈ Fx, which we may extend to a vector field
X ∈ F . Denote by φt the one-parameter group of diffeomorphisms exp(tX). Recall that
this is a family of automorphisms of the foliation. Let V0 be a locally closed submanifold of
M containing x such that TxV0⊕RX(x) = TxM . The flow map F : R×V0 →M is smooth
and one has F (0, x) = x (since exp(0) = Id) and (dF )0(s, ξ) = sX(x) + ξ for every s ∈ R
and ξ ∈ TxV0. Since X(x) and TxV0 spanned the whole of TxM , the differential (dF )0
is bijective. Hence, from the local inverse theorem, we can find an open neighbourhood
around (0, x) for which it is a diffeomorphism onto its image, i.e we find a diffeomorphism
ψ : I × V → W . Denote by φ : W → V the composition prV ◦ ψ−1 : W → V . This map
takes a point w in W and maps it to the (unique) point in V whose flow line contains
w. Denote by FW the restriction of F to the open subset W . Since V is transverse
to F , the submodule FV = i−1(F) is a foliation on V . (Here, i is the inclusion of V
into M). Since W ∼= I × V , we can decompose any vector field Y on W (uniquely) as
Y = fX +Z. Here, Z is ”parallel” to V , in the sense that (identifying w with (t, v)) one
has Z(t, v) = φt(Z

′
t(v)) where Z ′t is tangent to V . Notice now that Y ∈ FW if and only if

Y − fX ∈ FW (since fX ∈ F , its restriction lies in FW ). Hence, Y lies in FW if and only
if Z lies in FW . Since the flow of X preserves the foliation structure, this is equivalent
to Z ′t lying in FV for all t ∈ I. Hence, FW = φ−1(FV ). Evidently, (FV )x has dimension
k − 1. Therefore, we may apply the induction hypothesis to V . We now prove (2).

The first statement easily follows from the fact that the codimension of Fx is exactly the
dimension of V . The second statement is then a straightforward application of proposition
3.9. For the final statement, each vector field on W tangent to the fibers of φ gets mapped
to 0 by dφ. Since the zero vector field lies in FV , this vector field lies in φ−1(FV ) = FW .

Remark. This theorem shows that singular foliations have the following local picture.
By the submersion theorem, we can consider (W,FW ) and (V,FV ) as open subsets of Rn

and Rq and π as the projection map of Rn onto Rq. Then φ−1(FV ) = FW , i.e the foliation
is generated by the first k coordinate vector fields (which are tangent to the fibers) and
FS, which is a foliation of Rq vanishing at the origin.
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3.4 Leafwise smooth struture

In this section, we study the smooth structures of leaves, as given by Androulidakis
and Skandalis in ([AS], section 1.3.2). This is done by considering a particular smooth
structure on M , which is inherited from the foliation. In this smooth structure, every leaf
is an open smooth submanifold.

We will need the following concept.

Definition 3.9. Let f : N →M be a smooth map, and F a foliation on M . We say that
f is leafwise if f−1(F) = C∞c (N, TN).

Remark. A reformulation of this definition is that f is leafwise if

df(C∞c (N, TN)) ⊂ f ∗(F),

Notice that when f : N → M is leafwise, and N is connected, then f(N) is contained in
a leaf of F .

In ([AS], prop. 1.14), the authors show the following.

Proposition 3.11. There is a new smooth structure on M called the leafwise structure
such that a map f : N →M is smooth if and only if it is smooth and leafwise. The leaves
are the connected components of this structure.

In this smooth structure, the tangent space TxM for any x ∈ M is exactly Fx, where
F is the leaf through x.

3.5 Transitive Lie algebroid on leaves

In this section, we briefly mention the existence of a Lie algebroid AL, together with a
nice result due to Debord [CD]. The Lie algebroid is obtained by ”gathering all fibers Fx
along the leaf”.

Definition 3.10. Let (M,F) be a foliated manifold. Fix a leaf L, then the Lie algebroid
AL associated to L is given by

AL = ∪x∈LFx.

Its space of sections is given by Γc(AL) ∼= F
ILF

, where IL is the set of compactly
supported functions vanishing on L. In the next chapter, we will define the holonomy
groupoid H of a singular foliation F . This groupoid will be related to AL via the following
result. Following proposition tells us that the holonomy groupoid is longitudinally smooth,
in the sense that the restriction of H to a leaf is a Lie groupoid. Its statement and proof
can be found in ([CD2], prop. 2.2).

Proposition 3.12. [CD2] Let (M,F) be a foliated manifold, and fix a leaf L. Consider
the groupoid HL, which is the restriction of the holonomy groupoid to L. Then HL is a
Lie groupoid, and will integrate the Lie algebroid AL.

Of course, we don’t yet know what the holonomy groupoid of a singular foliation looks
like. This is the content of the next chapter.



Chapter 4

The holonomy groupoid of singular
foliations

Recall that any Lie groupoid G⇒M defines a foliation on M . This foliation is the image
of the anchor of the associated Lie algebroid A of G. Recall that for regular foliations,
we have seen the opposite direction too: any regular foliation has an associated Lie
groupoid, called the holonomy groupoid. In this chapter, we will construct a groupoid G
which ”integrates” more general singular foliations. This construction was first found by
Androulidakis and Skandalis in their paper The holonomy groupoid of singular foliations,
see [AS]. Hence, many of the following results can be found in this paper, but the order
in which they are stated and the interpretations of the results are different. Other helpful
sources are [Gd] and [W].

4.1 Bisubmersions and bisections

4.1.1 Bisections

Due to the presence of singularities, the path approach we used in the case of regular
foliation no longer works. To see why, we consider an example.

Example 4.1. Consider the foliation on R2 induced by the vector field x∂x. A transversal
section at the origin is an open neighbourhood of the origin, since a transversal section S
through 0 must satisfy

T0S ⊕ F0 = T0S = T0R ∼= R.

Let us naively try to extend the path approach for this (singular) case. For this, we need
to choose paths in nearby leaves. Notice that there are many possible choices: one choice
is the constant path at every point. The induced germ of the diffeomorphism associated
to this choice, i.e diffeomorphism that maps the begin points in leaves to the endpoints of
the paths chosen, is the identity map on S. Another possible choice of paths is the path
(z, t) 7→ φtx∂x(z), where φtx∂x is the time-t flow of the vector field x∂x. The germ arising
from this choice does not correspond to the germ of the identity diffeomorphism, as for
example their derivatives at the origin do not coincide. In particular, the ambiguity of
the choice of nearby paths is too large, in the sense that it does not induce a unique germ
of diffeomorphism on S.

35
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Due to this ambiguity, we will need to find another way to define the notion of holon-
omy. We will give a construction that is (at first sight) completely different than the
construction given earlier. Before even beginning with the construction, it is crucial that
one thinks about what the holonomy groupoid should be. For this, let us assume that our
foliation F is defined by a given Lie groupoid G⇒M . Interested in the information that
G encodes, we define the following.

Definition 4.1. LetG⇒M be a Lie groupoid. A bisection is a locally closed submanifold
V of G such that the restrictions s|V and t|V are diffeomorphisms from V onto open
subsets of M . The local diffeomorphism associated to a bisection V is the diffeomorphism
φV = t ◦ s−1.

Figure 4.1: A bisection

In figure 4.1, one sees a sketch of what such a bisection looks like. The associated
diffeomorphism is then obtained by mapping a point s(v) to t(v), where v ∈ V . Here, we
used the graphical representation of a groupoid seen earlier. The geometric information
encoded by such bisections is the following: for a groupoid G ⇒ M defining a foliation
F , the bisections are local diffeomorphisms contained in Aut(M,F). Bisections of such a
groupoid tell us how we can move along the leaf. In the regular case, the local bisections of
the holonomy groupoid encode expF . This gives us a direction we want to work towards:
we want a groupoid that encodes expF . These bisections are local objects, and we will in
fact tackle the problem as if it were local. In what follows, we will define bisubmersions.
These objects will resemble groupoids, and should be seen as ’pieces of the holonomy
groupoid’.

4.1.2 Bisubmersions

Before stating the definition, we briefly motivate where these objects originate from.
Given a manifold M , there is a trivial foliation on M : the only leaf is M itself. The
foliation F is then (locally) generated by a choice of frame ∂x1, ..., ∂xn associated to a
choice of local coordinates. To describe the leaf (and hence the foliation), we use the flows
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of these vector fields. This can be encoded in a neighbourhood W ⊂ U ×Rn (where U is
a coordinate neighbourhood) as follows:

s, t : W →M : s = prU , t : (p, y1, ..., yn) 7→ exp(
∑

yi∂xi)(p).

Recall that we defined exp(X) to be the time-1 flow of X. This object is not a groupoid:
there is no partially defined multiplication present. However, we can still talk about
bisections of W : these are the local diffeomorphisms corresponding to the flows expX(M).
Thus, this object can be used to record locally defined diffeomorphisms respecting the
(albeit trivial) foliation.

Let us now give the concrete definition.

Definition 4.2. [AS] Let (M,F) be a foliated manifold. A bisubmersion of (M,F) is a
triple (U, t, s) with U a smooth manifold and two submersions t, s : U →M satisfying

1. s−1(F) = t−1(F).

2. s−1(F) = C∞c (M, ker(ds)) + C∞c (M, ker(dt)).

Remark. Since t, s are submersions, we know from proposition 3.8 that s−1(F) and
t−1(F) are foliations on U . This definition forces the induced foliations to be the same.
The second condition tells us explicitly what this foliation looks like. Notice that C∞c (M, ker(ds))
and C∞c (M, ker(dt)) are sections of a vector bundle, and hence are the sections of constant
rank distributions. However, in general their sum is not and therefore the foliation s−1(F)
on U need not be regular.

To motivate this definition, we consider the following proposition ([AS], prop. 2.2).

Proposition 4.1. [AS] Let G⇒M be a Lie groupoid, and F be its associated foliation.
Then (G, t, s) is a bisubmersion of (M,F).

Proof. See ([AS], pp. 11).

Thus, a bisubmersion can be seen as a generalisation of a Lie groupoid. As we men-
tioned earlier, we can talk about the bisections of a bisubmersions. For the sake of
completeness, we state the definition.

Definition 4.3. [AS] Let (M,F) be a foliated manifold, and (U, t, s) a bisubmersion of
(M,F). Let x ∈ s(U). Then

1. A bisection at x is a locally closed submanifold V of U such that the restrictions of
both s and t to V are diffeomorphisms from V to open subsets of M .

2. The local diffeomorphism associated to V is φV = tV ◦ s−1V .

3. Let u ∈ U and φ a local diffeomorphism of M . Then φ is said to be carried by
(U, t, s) at u if there exists a bisection V containing u such that φV coincides with
φ in a neighbourhood of u.

The bisections of a bisubmersion should be viewed as the bisections of our ’atlas’ seen
in the introduction. For this to make sense, we should of course expect the obtained
diffeomorphisms to preserve the foliation. The next result tells us that this is the case.
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Proposition 4.2. Let (M,F) be a foliated manifold, and (U, t, s) a bisubmersion of
(M,F). Let V be a bisection of (U, t, s). Then the associated local diffeomorphism φV
preserves the foliation, i.e (φV )∗(F) = F .

Proof. Equivalently, we have to show that (φV )−1(F) = F . Using the definition, one
can write (φV )−1(F) = (tV ◦ s−1V )−1(F) = sV (t−1V (F)). However, from the definition of a
bisubmersion, one has t−1V (F) = s−1V (F). Thus, one finds (φV )−1(F) = sV (s−1V (F)) = F ,
proving the desired result.

Remark. Thus, we find that the local diffeomorphisms recorded by bisubmersions indeed
preserve the foliation structure.

To motivate the next result, recall that every point (x, y1, ..., yn) could be interpreted
as a local diffeomorphism by choosing a bisection: one extended this point to a locally
closed submanifold containing it and looked at the induced diffeomorphism. Thus, we
would want bisubmersions to have a lot of bisections. Luckily, this is the case.

Proposition 4.3. [AS] Let (U, t, s) be a bisubmersion of a foliated manifold (M,F). Let
u ∈ U , then there exists a bisection V containing u.

We can compare bisubmersions, as following definition shows.

Definition 4.4. [W] A morphism of bisubmersions (U1, t1, s1) and (U2, t2, s2) between
(M,F) and (N,F ′) is a smooth map f : U1 → U2 such that the following diagram
commutes:

M

U1 U2

N

s1

t1

f

s2

t2

In other words, we have s1(u) = s2(f(u)) and t1(u) = t2(f(u)) for all u ∈ U . There is
also a notion of local morphism between bisubmersions, where we replace f : U1 → U2

with a map f : U ′ → U2, where U ′ is an open subset of U .

A bisubmersion is a local object. To show this, we will need the following lemma.

Lemma 4.1. Let {Wi} be an open cover of M and Fi a foliation on every Wi. Suppose
that Fi = Fj on Wi ∩Wj for all i, j. Then there is a unique foliation F on M such that
Fi = F|Wi

.

Proof. Let {φi}i be a partition of unity subordinate to the covering by Wi. This allows us
to extend vector fields in every Fi to a global vector field on M in the usual way. Consider
the newly obtained submodule of sections of TM , generated by these vector fields. Let
us show that this gives rise to a foliation. By construction, this is easily seen to be locally
finitely generated. To show that it is involutive, choose Xi ∈ Fi and Xj ∈ Fj. We need
to show that [φiXi, φjXj] ∈ F . For this, we have

[φiXi, φjXj] = φiφj[Xi, Xj] + φi(Xi(φj))Xj − φj(Xj(φi))Xi.
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This identity follows from the basic properties of the Lie bracket. In this form, using the
fact that the two foliations coincide on their intersection, one can see that F is closed
under the Lie bracket. To show uniqueness, we need to show that two foliations agree
globally if and only if they agree locally. One direction is trivial, so let us assume they
agree locally. This means that for every point x ∈ M , we can find a neighbourhood U
such that F|U = F ′|U . Let X ∈ F , then X is a compactly supported vector field. Cover
the support of X with the aforementioned opens and choose a finite subcovering. In each
Uj, we can find a vector field ξj in F ′|U such that ξj = X|Uj

. Gluing these together
with partitions of unity, we find that X ∈ F ′. We can repeat the argument for the other
inclusion, yielding F = F ′.

Proposition 4.4. Let (M,F) be a foliated manifold. Suppose (U, t, s) is a triple, with U
a manifold and s, t submersions U →M . Suppose {Ui} is a covering of U . Then (U, t, s)
is a bisubmersion if and only each (Ui, ti, si) is, where si is the restriction of s to Ui.

Proof. Suppose (Ui, ti, si) is a bisubmersion for all i. Since s, t are submersions, they
are transversal to F , which implies that s−1i (F) = t−1i (F) is a foliation of Ui. Since
si|Uj

= sj|Ui
and the same holds for ti, tj, the foliations agree on intersections. This

implies by lemma 4.1 that there is a unique foliation FU on the whole of U which restricts
to si(F) on each Ui. Since s−1(F) and t−1(F) both restrict to these sets, uniqueness in
above lemma shows that s−1(F) = t−1(F). The other direction is obvious.

Following proposition tells us that bisubmersions can be inverted and composed.

Proposition 4.5. [AS] If (U, t, s) is a bisubmersion, then so is (U, s, t) (where we swapped
the roles of s and t). If (U, tU , sU) and (V, tV , sV ) are bisubmersions, then (U ×sU ,tV
V, tU , sV ) is a bisubmersion.

Remark. Recall that the set U ×sU ,tV V is defined by

U ×sU ,tV V = {(u, v) ∈ U × V |sU(u) = tV (v)} .

Notation 4.1. We sometimes denote the composition of two bisubmersions (U1, t1, s1)
and (U2, t2, s2) by U1 ◦ U2. Similarly, in the setting of above proposition, we sometimes
denote (U, s, t) as U−1.

At this point, we have found desirable objects: bisubmersions are able to record the
desired information, namely automorphisms of foliations. However, there are a lot of
possible bisubmersions. Recall that the holonomy groupoid in the regular case was mini-
mal. Since we want our holonomy groupoid to be the singular sibling of the regular case,
it is nice to require minimality too. Hence, we would like to find special bisubmersions
that record in some sense the ’minimal’ amount of information, whilst still giving enough
information for our purposes. This is the topic of next section.

4.2 Path-holonomy bisubmersions

Let us recall the motivational example of bisubmersions: using a local frame, one ’traced
out’ the leaf by flowing along the vector fields. Intuitively, W = M × Rn where x was
the starting point and (y1, ..., yn) were ’times’, indicating how long one had to flow in the



CHAPTER 4. THE HOLONOMY GROUPOID OF SINGULAR FOLIATIONS 40

direction of the associated vector field. In this section, we would like to extend this idea.
As in the introduction, one can intuitively think about these bisubmersions as telling
us how one can move a point along a leaf. Of course, this extension requires a bit of
work. Whilst we could find a base of vector fields of F in a neighbourhood U (which
was just a frame in our trivial example), this need not be the case for singular foliations
due to the existence of singularities. Nevertheless, from proposition 3.1 we can find local
generators X1, ..., Xn of F in some neighbourhood U . Using these, we will extend the idea
given above to the singular case. The next theorem tells us that this indeed gives rise
to bisubmersions. We will call these bisubmersions path-holonomy bisubmersions. They
”correspond” to small exponentiations of generating vector fields of the foliation.

Theorem 4.1. [AS] Let (M,F) be a foliated manifold, and x ∈ M . Let X1, ..., Xn

be vector fields whose images in Fx form a basis of Fx. For y ∈ Rn, we define φy =
exp(

∑
yiXi) ∈ expF . Write W0 = Rn × M and define s0(y, x) = x and t0(y, x) =

expx(
∑
yiXi). Then

1. There is a neighbourhood W of (0, x) in W0 making (W, t, s) a bisubmersion. Here,
t, s are the restrictions of t0, s0 to W .

2. Let (V, tV , sV ) be a bi-submersion and v ∈ V . Assume that s(v) = x, and that
the identity of M is carried by (V, tV , sV ) at v. Then there is a local morphism
of bi-submersions g : V ′ → W (with V ′ an open neighbourhood of V ) that is a
submersion and satisfies g(v) = (0, x).

Proof. We first prove (1). For this, consider the vector field Z on W0 defined by Z(y, x) =
(0,
∑

i yiXi). Evidently, since s0 is the second projection, we have Z ∈ s−10 (F). Hence,
the flow of this vector field φ = expZ, is an automorphism of the foliation s−10 (F) on W0.
Consider now the reflection α : (y, x) 7→ (−y, x), and consider κ = α ◦ φ. Remark that
s−10 (F) is invariant under α (and thus under κ). Since κ2 = id (it corresponds to first
flowing in one direction, then flowing in the opposite direction) and s0 ◦ κ = t0 (which is
straightforward), we find

t−10 (F) = κ−1 ◦ s−10 (F) = κ ◦ s−10 (F) = s−10 (F).

From this, we see that C∞c (W0, ker ds0) +C∞c (W0, ker dt0) ⊂ s−10 (F). Indeed, it is easy to
see that C∞c (W0, ker ds0) ⊂ s−10 (F) and analogously C∞c (W0, ker dt0) ⊂ t−10 (F). Since we
just showed that s−10 (F) = t−10 (F), we conclude. Let us now consider dt0(ker ds0) ⊂ t∗(F).
Since F is spanned by the Xi near x, we can find a neighbourhood W of (0, x) in W0 and
a smooth function h = (hij) with values in the n× n-matrices such that

(dt0)y,u(z, 0) =
∑

zihi,j(y, u)Xj,

where (y, u) ∈ W and z ∈ Rn. This follows from the fact that dt0(ker ds0) ⊂ F .
Furthermore, we have hij(0, x) = δij. By shrinking W , we may assume that h is in-
vertible. We denote the restriction of s0 and t0 to W by sW and tW repsectively.
Thus, we have just proven that (dtW )(C∞c (W, ker dsW )) = t∗W (F). Hence, t−1W (F) ⊂
C∞c (M, ker dsW ) + C∞c (W, ker dtW ). This proves (1). To prove (2), notice that the re-
quired submersion is local. Hence, we can assume V to be a small open subset containing
V , which we shrink so that sV (V ) ⊂ s(W ). By shrinking if necessary, the bundles ker dtV
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and ker dsV are both trivial. Since being a bisubmersion is a local condition, we still have
a bisubmersion (V, tV , sV ). Evidently the map dt : C∞c (V, ker dsV )→ t∗V (F) is surjective.
Thus, we can find Y1, ..., Yn ∈ C∞c (V, ker dsV ) such that dtV (Yi) = Xi. Since dtV is lin-
ear, the fact that Xi(x) form a basis of Fx, we have that the Yi(v) are also independent.
Since linear independence is a local condition, we may shrink V (so that it still contains
v) and assume the Yi are independent on the whole of V . Choose Zn+1, ..., Zk so that
(Y1, ..., Yn, Zn+1, ..., Zk) form a frame of ker dsV (recall that these bundles were trivial!)
One can replace Zi with Yi to obtain a set (Y1, ..., Yk) such that t∗V (Yi) = Xi for i ≤ n
and t∗V (Yi) = 0 if i > n (using the fact that the Y1, ..., Yn span the image of dt∗V ). Note
that we can do this in such a way that (Y1, ..., Yk) still form a frame. For small y ∈ Rk,
we get a partially defined diffeomorphism exp(

∑
yiYi) of V . By assumption, there is a

bisection U0 ⊂ V through v where sV and tV coincide. We can thus view U0 as a subset
in Rn, by identifying it with its image under sV or equivalently tV . We can find an open
neighbourhood U of v in U0 and a small open ball B ⊂ Rk such that h : (y, u) 7→ ψy(u)
is a diffeomorphism of U × B into an open neighbourhood V ′ of v. Let p : Rk → Rn

be the projection map. The map p ◦ h−1 : V ′ → W is the desired morphism, and is a
submersion.

As a corollary of theorem 4.1, we find the following proposition.

Proposition 4.6. Let (U, tU , sU) and (V, tV , sV ) be bisubmersions. Let u ∈ U and v ∈ V
be such that sU(u) = sV (v).

1. If the identity local diffeomorphism is carried by (cf. definition 4.3) U at u and
by V at v, there exists a local morphism of bisubmersions f : U ′ → V such that
f(u) = v.

2. If there is a local diffeomorphism carried by U at u and V at v, then there exists a
local morphism f : U ′ → V such that f(u) = v.

3. If there is morphism of bisubmersions g : V → U such that g(v) = u, then there is
a local morphism of bisubmersions f : U ′ → V such that f(u) = v.

Proof. We first prove (1). Using the notation of theorem 4.1, we have local morphisms of
bisubmersions g : U ′ → W , h : V ′ → W which are submersions such that g(u) = h(v) =
(0, x). Recall that for a submersion, every point in the domain lies in the image of a
local section. Let hs be a local section such that hs(0, x) = v of the submersion h. The
domain of hS is an open subset around (0, x). We can shrink the domain of g (so that it
still contains u) so that the image of g is contained in the domain of hs. Then consider
the map f = hs ◦ g. We claim that this is a morphism of bisubmersions. Let u′ ∈ U .
Then tV (f(u)) = tV (hs(g(u))) = tV (hs(0, x)) = tV (v). The proof for sV is completely
analogous. This proves (1). To show (2), suppose ϑ is a local diffeomorphism carried by
U at u and by V at v. We may shrink U, V so that tU(U) and tV (V ) both lie in the image
of ϑ. Then consider (U, ϑ−1 ◦ tU , sU) and (V, ϑ−1 ◦ tV , sV ). These carry the identity local
diffeomorphism, and hence we may apply (1). One can easily deduce that this implies
the proposition. For (3), it suffices by (2) to show that there is a local diffeomorphism
carried by both U and V . Suppose V0 is the bisection through v carrying φ. Then g(V0)
is a bisection through u carrying tV ◦ g ◦ g−1 ◦ s−1V = φ. Hence they carry the same
diffeomorphism, so we conclude.
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Remark. Suppose that we have a neighbourhoodW of a point (0, x) as in the theorem 4.1.
Consider a local submanifold V of the form {0} × U , where U is an open neighbourhood
of x. By taking U small enough, we can ensure V ⊂ W since W is open. This is a
bisection through (0, x): the source map embeds V into M and since the time-zero flow is
the identity, the same holds for the target map. In particular, the carried diffeomorphism
obtained from this bisection is the identity. For this reason, path-holonomy bisubmersions
are sometimes called bisubmersions near the identity.

More importantly, these bisubmersions carry the diffeomorphisms in expF . As re-
marked earlier, this was exactly the set of diffeomorphisms we wanted to be able to
record! Thus, these bisubmersions have very desirable properties.

However, we are not yet finished since we still need to glue together these bisubmersions
into a groupoid structure. This is the topic of the next section.

4.3 The holonomy groupoid

4.3.1 Introduction

In this section, we will show how to construct a groupoid out of a certain family of
bisubmersions, called an atlas. The ideas presented are found in ([AS], section 3), but we
choose to give a softer introduction to the topic in this subsection first. It is important to
recall everything we have already done, and the things we still need to do. We have already
found a very promising type of bisubmersion, called path-holonomy bisubmersions. We
have seen that they encode expF , which is what we deemed necessary in the beginning
of this chapter. We have already briefly discussed that the holonomy groupoid had to
encode the information regarding the composition of the relevant bisubmersions (to get a
more ”global” point of view). Hence, we end up with the following definition.

Definition 4.5. Let (M,F) be foliated manifold. Let {(Ui, ti, si)}i∈I be some family of
path-holonomy bisubmersions covering M , i.e ∪i∈Isi(Ui) = M . Let U be the family con-
taining all finite compositions of the Ui and their inverses. Then we define the holonomy
groupoid H(F) (or just H if the underlying foliation is clear) by

H(F) =
⊔
U∈U

U/ ∼

with a suitable equivalence relation we will define later. We denote by Q = (qi)i∈I the
projection of the disjoint union onto H.

Remark. In this definition, we implicitly used the fact that any point of M lies in a
bisubmersion which is essentially the content of the first statement in theorem 4.1. One
way to rephrase the definition, which might give a bit more geometric insight, is as
follows. One covers M by open subsets U which are finitely generated by a minimal set
of generators as in proposition 3.1. Then, one considers the bisubmersions associated to
these generators. This gives us a family of path-holonomy bisubmersions covering M for
which we can define a holonomy groupoid.

Remark. We will revisit the definition of the holonomy groupoid later on, and we will
be a bit more precise regarding some technical details. Thus, it is important to note that
above definition does not tell the whole story.
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We now define the suitable equivalence relation mentioned in example 4.5. For this,
we need the following definition.

Definition 4.6. [AS] Let (M,F) be a foliated manifold. Suppose U = {(Ui, ti, si)}i∈I is
a family of bisubmersions of (M,F). We say that a bisubmersion (V, tV , sV ) is adapted
to U if for each v ∈ V , we can find a bisubmersion (Ui, ti, si) ∈ U and a local morphism
of bisubmersions f : V ′ → Ui (where v ∈ V ′ ⊂ V open).

Using definition 4.6, we get the following definition.

Definition 4.7. In the context of definition 4.5, we endow the disjoint union
⊔
i Ui with

the equivalence relation given by Ui 3 u ∼ v ∈ Uj if and only if there is a local morphism
of bisubmersions f : U ′i → Uj such that f(u) = v.

Remark. It is important to note that Ui and Uj in definition 4.7 need not be different.

Remark. Notice that it follows from proposition 5.4(3) that this relation is symmetric.

One might wonder why we only required a local morphism of bisubmersions. For this,
recall that we used bisubmersions to record local automorphisms in Aut(M,F). Using
this reasoning, we want to identify points of bisubmersions if and only if they record the
same local diffeomorphisms. In terms of bisections, this is equivalent to stating that both
points carry the same bisection. Since bisections are local objects, it is more appropriate
to consider local morphisms.

Notice that this naturally endowsH with the quotient topology, making it a topological
space. We now show that it is a groupoid.

Definition 4.8. Let (M,F) be a foliated manifold with associated holonomy groupoid
H. Fix an element h ∈ H. Let u ∈ (U, tU , sU) be an element such that h = [u]. Then we
define

s(h) = sU(u), t(h) = tU(u).

Now let us check whether definition 4.8 makes sense.

Proposition 4.7. Let (M,F) be a foliated manifold with holonomy groupoid H. Then
the structure maps s, t : H →M are well-defined.

Proof. Let h ∈ H, and suppose there are u ∈ (U, tU , sU) and v ∈ (V, tV , sV ) such that
h = [u] = [v]. Let us prove that s(h) = sU(u) = sV (v). For this, recall that by definition
there exists a local morphism of bisubmersions f : U ′ → V such that f(u) = v. A
morphism of bisubmersions satisfies by definition sU(u) = sV (f(u)) = sV (v). Hence, the
map s is well-defined for the equivalence relation given above. The proof for the target
map is completely analogous.

For H to be a groupoid, we still need to define the partially defined multiplication.
For this, we will need the following lemma.

Lemma 4.2. Let (U, tU , s) and (V, tV , sV ) be two bisubmersions. Let (u, v) ∈ U ×sU ,tV V ,
which implies sU(u) = tV (v). Suppose φ is carried by (U, tU , sU) at u and ψ is carried
by (V, tV , sV ) at v. Then, the composition φ ◦ ψ is carried by the composition U ◦ V =
(U ×sU ,tV V, tV , sU) at (u, v).
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Proof. By definition, we can find bisections Nφ and Nψ at u respectively v for which
the germs of the induced diffeomorphisms coincide with φ respectively ψ. Consider the
bisection N := Nφ×sU ,tV Nψ. Evidently, (u, v) ∈ N . The diffeomorphism it carries is now
given by tU |N ◦ s−1V |N . Since sU |N = tV |N , we have that s−1U |N = t−1V |N = idN . Hence, we
find

tU |N ◦ s−1V |N = tU |N ◦ s−1U |N ◦ tV |N ◦ s
−1
V |N .

By our assumptions, the latter coincides with φ ◦ ψ in a small neighbourhood of (u, v).
This proves the claim.

Remark. Here, we abused the notation a bit and considered sV as the map (u, v) 7→ sV (v)
and tU as the map (u, v) 7→ tU(u).

Using this, we can define the multiplication as follows.

Definition 4.9. On H, we define the following multiplication. Let h1, h2 ∈ H with
s(h1) = t(h2), and suppose that h1 = [u1] and h2 = [u2], where u1 ∈ (U1, t1, s1) and
u2 ∈ (U2, t2, s2). We then define

h1h2 = [(u1, u2)],

where [(u1, u2)] is the image of (u1, u2) ∈ U1 ◦ U2 in H.

Proposition 4.8. This multiplication satisfies the required conditions: it is well-defined
and associative.

Proof. Let us first check whether it is well-defined. There are several things we need
to check. First, notice that s1(u1) = t2(u2), which follows from lemma 4.7. Hence,
(u1, u2) ∈ U1 ◦ U2. Second of all, since U contains the finite compositions of elements in
U , it also makes sense to talk about [(u1, u2)]. We now need to check if the definition
is independent of choice of representatives. Hence, suppose we have another pair u′1 ∈
(U ′1, t

′
1, s
′
1), u

′
2 ∈ (U ′2, t

′
2, s2) satisfying h1 = [u′1] and h2 = [u′2]. Recall that the existence of

a local morphism f (with f(u) = v) is equivalent with the two bisubmersions carrying the
same diffeomorphism at u and v respectively. Since [u1] = [u′1] and [v1] = [v′1], we find that
there exists a diffeomorphism φ1 carried by U1 at u1 and U ′1 at u′1, and a diffeomorphism
φ2 satisfying the same statement for U2 and U ′2. By lemma 4.2, the compositions carry
φ1 ◦ φ2 at (u1, u2) and (u′1, u

′
2) respectively. Thus, they carry the same diffeomorphism,

implying that [(u1, u2)] = [(u′1, u
′
2)] from which it follows that the multiplication is well-

defined. The fact that the multiplication is associative follows from the associativity of
the composition of diffeomorphisms.

Finally, we define the identity elements and show their existence.

Definition 4.10. An element h ∈ H is called an identity element if h carries the identity
on M . In this case, s(h) = x, we denote h = 1x

Just like for compositions, we will need the following lemma for inverses.

Lemma 4.3. Suppose (U, t, s) carries a diffeomorphism φ at u. Then the inverse bisub-
mersion (U, s, t) carries φ−1 at u.
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Proposition 4.9. Given an element x ∈ M , then 1x ∈ H. Furthermore, this element
satisfies h1x = h = 1yh whenever s(h) = y, t(h) = x.

Proof. Let (U, t, s) ∈ U be a path-holonomy bisubmersion such that x ∈ s(U). By
definition, (U, s, t) (which is the inverse of (U, t, s)) also lies in U . Consider an element
u ∈ (U, t, s) such that s(u) = x. Denote by u−1 ∈ (U, s, t) the corresponding element in
the inverse. We denote by h−1 its equivalence class [u−1] in H. Then combining lemma
4.2 and lemma 4.3 we find that h−1h carries the identity, and hence 1x = h−1h. The
multiplication identities are an immediate consequence of lemma 4.2.

4.3.2 Groupoid of an atlas

In this section, we will revisit the definition of a holonomy groupoid, this time being a
bit more precise. We will give a more general way to construct a groupoid from a certain
choice of bisubmersions.

Definition 4.11. Let U = (Ui, ti, si) be a family of bisubmersions. We call U an atlas if

1. U covers M ,

2. U has adapted inverses, i.e for all (Ui, ti, si) ∈ U , the bisubmersion (Ui, si, ti) is
adapted to U , and

3. U has adapted finite compositions.

A choice of atlas (and hence a choice of bisubmersions) corresponds to a choice of
’recorded local automorphisms’. Thus, it is natural to compare atlases. Motivated by
what we have found earlier, the following definition makes sense.

Definition 4.12. Let U = (Ui, ti, si) and V = (Vi, t
′
i, s
′
i) be two atlases. We say that U

is adapted to V if every element of U is adapted to V (in the sense of definition 4.6). We
say that U and V are equivalent if they are adapted to each other.

Intuitively, an atlas U is adapted to V if all the local diffeomorphisms recorded by U
are also recorded by V .

We now define the groupoid of an atlas, which is a generalisation of the construction
we made in the previous section.

Definition 4.13 (The groupoid of an atlas). Let U = (Ui, ti, si) be an atlas. We endow
the set

⊔
U∈U U with the equivalence relation seen in definition 4.7. We denote by GU the

quotient of this equivalence relation. We furthermore denote by Q = (qi)i :
⊔
i Ui → GU

the quotient map. We endow GU with the structure maps satisfying

G M M G

Ui Ui

s

qi

t

qi
si ti

We further endow GU with a partially defined multiplication given by

qi(u)qj(v) = qUi◦Uj
(u, v).
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For the multiplication to make sense, we used following result.

Proposition 4.10. Consider the setting as in above definition. For every bisubmersion
(U, tU , sU) adapted to U , there exists a map qU : U ′ → GU such that, for every local
morphism f : U ′ → Ui and every u ∈ U ′, we have qU(u) = qi(f(u)).

Remark. One can show that the groupoid of an atlas is indeed a groupoid. For this, one
can use similar strategies as we used in previous section, but they must be more careful
since we now don’t have compositions but adapted compositions.

Let us consider some examples.

Example 4.2. Given a covering by s−connected path-holonomy bisubmersions, one can
choose U as the smallest atlas containing said cover. The groupoid associated to this atlas
is called a path-holonomy atlas. We will later use this path-holonomy atlas to (re)define
the holonomy groupoid.

Example 4.3. Consider the leaf-preserving atlas, which consists of all bisubmersions
(U, t, s) such that for all u ∈ U , s(u) and t(u) lie on the same leaf. This is an atlas: com-
positions and inverses of leaf-preserving bisubmersions are evidently again leaf-preserving.
Notice that in particular, the path-holonomy bisubmersions are leaf-preserving. Hence,
the leaf-preserving atlas covers M (and is hence an atlas). Also, notice that the fact that
path-holonomy bisubmersions are leaf-preserving implies that path-holonomy atlases are
adapted to the leaf-preserving atlas.

Example 4.4. Suppose that (M,F) is a foliated manifold. Suppose F comes from a Lie
groupoid G⇒M . We have already seen in proposition 4.1 that (G, t, s) is a bisubmersion.
But it actually an atlas. The fact that (G, t, s) covers M is immediate: the source map is
always a surjective submersion onto the base manifold. Furthermore, G evidently has an
adapted inverse and adapted compositions. One can show that if G is s−connected, the
path holonomy atlas is actually equivalent to (G, t, s). Hence, the path-holonomy atlas is
a quotient of this atlas, i.e it is a quotient of G.

There is a particularly nice result relating the relation between atlases and the relation
between their respective groupoids.

Proposition 4.11. Let U ,V be two atlases. Suppose U is adapted to V , then there is
a natural injective groupoid morphism α : GU → GV . Furthermore, α is bijective if and
only if the atlases are equivalent.

Proof. We sketch the proof. Consider the map α̃ :
∐
Ui → GV , defined as follows. For

any u ∈ U , let f be a morphism of bisubmersions f : U ′ → V , where U ′ is an open
neighbourhood of u and V is a bisubmersion in V . Then α̃(u) = [f(u)]. One can show
that α̃ induces a well-defined map α on the quotient, and that α is injective. The second
part is easy: α is surjective if and only if each v ∈ V ∈ V has an equivalent u ∈ U ∈ U ,
which means V must be adapted to U .

We now claim that a path holonomy bisubmersion is adapted to any atlas V .

Proposition 4.12. Let (W, t, s) be a path-holonomy bisubmersion. Let V be any atlas
of bisubmersions for F . Then W is adapted to V .
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Proof. Recall that W is an open neighbourhood of (0, x) in Rn ×M . Let (y, x) be any
point in W with respect to this decomposition. We need to find a local morphism of
bisubmersions f : W ′ → V with W ′ a neighbourhood of (y, x) and V a bisubmersion
in the atlas V . Let X1, ..., Xn be the local generators associated to W . Furthermore,
consider the vector field X̃ =

∑
i yiXi. If y = 0, the point (y, x) carries the identity

diffeomorphism. Since V is an atlas, consider a bisubmersion V ∈ V such that x ∈ s(V ).
Since V has adapted compositions and adapted inverses, it is easy to see that there is a
bisubmersion adapted to V that carries the identity diffeomorphism ”at x”. By theorem
4.1 and proposition 4.6, there is a local morphism f : W ′ → V . If y 6= 0, X̃ 6= 0. One can
thus find a new set of generators Y1, ..., Yn where Y1 = X̃. These give a new bisubmersion
(W”, t, s), and it is easy to see that there is a morphism of bisubmersions f : W → W with
f((y, x)) = ((1, 0, ..., 0), x). Since the property of being equivalent is transitive, we may
assume W = W” and (y, x) = ((1, 0, ..., 0), x). Consider now the path α : I →M defined
by α(t) = exp(tY1). Since Y1 ∈ F , this map is an automorphism of the foliation, so along
each point of the path applying α(t) to Y1, ..., Yn we get a set of generators Y t

1 , ..., Y
t
n of

F in a neighbourhood of α(t). Notice that Y t
1 = Y1. Since this is a set of generators, we

can find for each t a bisubmersion (Wt, s, t), with Wt a neighbourhood of (0, α(t)). Just
like we did above, we can find a morphism of bisubmersions ft : W ′

t → Vt, where W ′
t is an

open neighbourhood in W ′
t of (0, α(t)). By choosing n ∈ N large enough, we can find a

finite (α(I) is compact) covering Wα( i
n
) with the property that ( 1

n
y, γ( i

n
)) ∈ Wα( i

n
). Notice

that in this case, we can compose ( 1
n
y, γ( i

n
)) ◦ ( 1

n
y, γ( i−1

n
)). Since this composition carries

the diffeomorphism exp(Y1), and since the same holds for (y, x), they are equivalent.
However, each factor in the composition had an associated bisubmersion V i

n
in V . Thus,

their composition also has an associated bisubmersion in V , since the latter has adapted
compositions. This shows the desired result.

Combining both results, we obtain the following results.

1. A path holonomy atlas is adapted to any other atlas. Thus, given the groupoid of a
path-holonomy atlas GU and a groupoid of any other atlas GV , one can injectively
map GU → GV .

2. In fact, given two path-holonomy bisubmersions V1 and V2, it follows that GV1
and GV2 are isomorphic as groupoids. Therefore, it makes sense to talk about the
groupoid associated to the path-holonomy atlas.

Thus, the following definition makes sense.

Definition 4.14. Let (M,F) be a foliated manifold. Let V be a path-holonomy atlas
associated to F . Then the groupoid H(F) associated to the path-holonomy atlas is called
the holonomy groupoid.

Remark. One could wonder if this notion of holonomy is a generalisation of the one
given in the case of regular foliations. Since a regular foliation is also singular, we are
able to compare the two. One can show that they do indeed coincide. Let us present the
sketch of a proof that shows this. First, recall that Hol(M,F) (the holonomy groupoid in
the regular case) was the minimal (in the sense of Moerdijk-Mrcun [MM2]) Lie groupoid
integrating F . Here, One can show that H is the minimal topological groupoid integrating
the foliation. Thus, it remains to show that H is a Lie groupoid, in which case minimality
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of both groupoids forces them to be equal. In section 4.4, we will discuss a result which
shows that H is indeed a Lie groupoid in the case of regular foliations.

We now consider some examples of holonomy groupoids.

Example 4.5. Consider the foliation of F on R2 coming from the action of S1. As we
have already mentioned, this foliation is generated by the rotational vector field x∂y−y∂x.
Consider now the bisubmersion S1 × R2, whose source map is the second projection and
the target map t(θ, x) = rθx is the rotation by an angle θ. This is nothing else than the
action groupoid. As we have already seen in example 4.4, this is indeed a bisubmersion.
In fact, since the source fibers are diffeomorphic to S1, this groupoid is s−connected.
Whence, the holonomy groupoid is diffeomorphic to a quotient of the action groupoid
S1 × R2. What we still have to do is study the quotient. First of all, notice that outside
of the origin, the foliation is regular. The holonomy groupoid for this regular part of the
foliation is isomorphic to S1 × (R2 \ {0}). Hence,

Hol(F)|R2\{0} ∼= S1 × (R2 \ {0}).

Let us now look at q0, the projection at the origin (Here, the projection is the natural
projection S1×R2 → H). We claim that the map is indeed injective. For this, we need to
show that for any two different points (g, 0) and (g′, 0), there are bisections through these
points that carry different diffeomorphisms. A smooth local section of the action groupoid
is a smooth map x 7→ (φ(x), x), where φ is a smooth map from an open neighbourhood of 0
in R2 to S1. These maps determine fully the local section, and we denote the smooth map
associated to a bisection through g respectively g′ by φg and φ′g. Notice that φg(0) = g
and φg′(0) = g′. The associated bisections are given by x 7→ φg(x) · x and x 7→ φg′(x) · x
respectively. These maps are different: their derivatives at 0 are the rotations by the
angles of g and g′ respectively, and since g 6= g′, their derivatives do not coincide. Thus,
they carry different bisections which implies that (g, 0) and (g′, 0) are not equivalent in
the quotient. Thus, the holonomy groupoid coincides with the action groupoid.

Example 4.6. Consider the foliation of R generated by x∂x. Consider the path holonomy
bisubmersion generated by x∂x, i.e (U, t, s) ∈ R× R (we only have one generator!) given
by s(z, y) = z and t(z, y) = eyz, which is the time-y flow of x∂x, starting at z. This is
an atlas, and since it is a path holonomy bisubmersion the holonomy groupoid is an atlas
of it. Again, we claim that it is actually isomorphic to the action groupoid. The idea is
the same: outside of the origin we have a regular part, and the argument above can be
repeated for the singular part in the origin. In figure 4.2, we show the difference between
the bisections V1 and V2.
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Figure 4.2: A graphical representation of the different bisections

However, it is not always the case that the holonomy groupoid and the action groupoid
coincide.

Example 4.7. Consider the action of GL2(R) on R2. Outside of the origin, it is generated
by ∂x and ∂y. At the origin, we have the generators x∂x, y∂y, x∂y and y∂x. Outside of the
origin, the foliation is regular and in fact is the one-leaf foliation. This regular foliation
has as associated holonomy groupoid the pair groupoid, and hence outside of the origin
we obtain the pair groupoid

Hol(F)|R2\{0} ∼=
(
R2 \ 0

)
×
(
R2 \ {0}

)
.

At the origin, one can show that

Hol(F)|0 ∼= GL2(R)× {0} .

Notice that in general the holonomy groupoid of a singular foliation need not be
smooth, as shown by example 4.7, where the dimension of the source fiber is either 2
or 4 depending on the chosen base point. Thus, the holonomy groupoid is a topological
groupoid but need not be a Lie groupoid. In the following section, we briefly touch upon
the smoothness of the holonomy groupoid.
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4.4 Smoothness of the holonomy groupoid

This section gives a brief overview of some results regarding the smoothness of the holon-
omy groupoid. We have already briefly touched upon the longitudinal smoothness of the
holonomy groupoid. Here, we focus on the smoothness of H as a groupoid. We need the
following definition.

Definition 4.15. LetM be a smooth manifold. A singular foliation F is called almost regular
if it is a projective module. By Serre-Swan’s theorem [Sw], this is equivalent with F being
isomorphic to the space of compactly supported sections of a vector bundle.

Recall that a regular foliation could always be described by a Lie algebroid with
injective anchor map. The following proposition motivates the terminology of almost
regular foliations.

Proposition 4.13. Let F be an almost regular foliation. Then the associated vector
bundle A→ TM is a Lie algebroid with as anchor the evaluation map, which is injective
on an open dense subset of M .

Proof. (Sketch) Since F is involutive, which means it is closed under the Lie bracket, and
since we have the isomorphism F ∼= C∞c (M,A), we can pull back the Lie bracket on F
to a Lie bracket on the sections of A. Furthermore, the injection F ↪→ X(M) induces an
injective map C∞c (M,A) ↪→ X(M). It follows that the anchor map A → TM as defined
in the proposition is injective on a dense open subset of M .

It was shown by Debord (in [CD]) that for these type of foliations, one can find
a Lie groupoid that integrates the foliation. In fact, there is a canonical isomorphism
Hol(F) ∼= G. In other words, projectiveness of F is a sufficient condition for Hol(F).
Following result states that it is necessary.

Proposition 4.14. [AZ2] Let (M,F) be a singular foliation. Then Hol(F) is a Lie
groupoid if and only if F is a projective foliation.

This tells us that the presence of singularities gets reflected in the holonomy groupoid:
it often possesses an ugly topology, and is only smooth in the nicest of singular foliations.
However, it is still possible to get a geometric interpretation of the groupoid, in the form
of holonomy transformations.



Chapter 5

Holonomy transformations

In this section, we give a way to geometrically interpret the holonomy groupoid. Recall
that in the regular case, we associated to leafwise paths the germ of a diffeomorphism
acting on a transverse section T . The idea of holonomy transformations is to extend
this idea in a suitable way to the case of singular foliations. Concretely, we will define a
map Φ that maps elements of the holonomy groupoid to (equivalence classes of) germs
of diffeomorphisms of transverse sections. In the final section, we will show that Φ is
injective. The main reference of this chapter is the paper by Androulidakis and Zambon
([AZ]).

5.1 Preliminaries

Before talking about holonomy transformations, we need some preliminary results. The
first result we need is an already mentioned splitting result, and can be found in ([AZ],
prop. 1.4).

Theorem 5.1. [AZ] Let (M,F) be a foliated manifold, and fix an element x ∈M . Let S̃
be an embedded submanifold of M such that TxS̃⊕Fx = TxM . We call such an embedded
submanifold a slice at x. Then there exists an open neighbourhood W of x in M and a
diffeomorphism of foliated manifolds

(W,F|W ) ∼= (Ik, T Ik)× (S,FS).

Here, k = dim(Fx), I = (−1, 1), S̃ ∩W =: S and FS = i−1(F) (where i : S ↪→ W ), i.e FS
is the restriction of F to S.

This result gives us a nice way to look at transversals in the case of singular foliations.
It tells us that we can endow these transversals with singular foliations, vanishing at the
origin. Notice that in the case of regular foliations, we just recover the definition of regular
foliations, in which case the foliation on the transversal section is the one whose leaves
are points.

Remark. Notice that if Fx is zero dimensional for some x, then the slices are open
neighbourhoods around x.

Example 5.1. Consider the foliation on R2 generated by the vector fields ∂x, y∂y. The
leaf given by y = 0 is a singular leaf, and in figure 5.1, we show how the splitting theorem
locally decomposes the foliation.
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Figure 5.1: The splitting theorem in action

Recall that elements of the holonomy groupoid in the regular case were in particular
germs of diffeomorphisms of transversals. Indeed, for S some transversal, we had the map

HolS : π1(L, p)→ GermDiff(S).

With this in mind, we want to find a suitable extension to the case of singular foliations.
Thus, we want to find a way to associate to elements of the holonomy groupoid a germ
of a diffeomorphism of transversals. Since these transversals carry more information than
the regular counterparts, the following notations (introduced in [AZ]) are natural.

Notation 5.1. Let (M,F) be a foliated manifold, x, y ∈ M be points on the same leaf.
Let Sx, Sy be slices as in the splitting theorem based at x and y respectively. Recall that
F(x) = {X ∈ F|X(x) = 0} and Ix = {f ∈ C∞(M)|f(x) = 0}.

1. GermAutF(Sx, Sy) is the space of germs of x of foliation diffeomorphisms from
(Sx,FSx) to (Sy,FSy).

2. exp(IxF) is the space of one-time flows of time-dependent vector fields in IxF . For a
small recap regarding time-dependent vector fields, see appendix 6.2. Analogously,
one defines exp(IxFSx), exp(FSx) and exp(F(x)).

Remark. In the case of regular foliations, we have already seen that FSx was the foliation
on Sx given by points. Thus, exp(IxFSx) and exp(FSx) are given by the time-1 flow of
the trivial vector field, and hence equal {IdSx}.

5.2 Construction

In this section, we construct the desired group morphism. We first translate the con-
struction of holonomy in the regular case to a more suitable setting. Instead of taking
the ’leaf-wise’ approach, we consider a more vector field theoretic point of view. Let
α : I →M be a leafwise path in (M,F) with α(0) = x and α(1) = y. At each time t ∈ I,
we extend α′(t) to a vector field Zt lying in F in such a way that the flow Γ : Sx× I →M
of the time dependent vector field Zt takes Sx to Sy. We will see later that this coincides
with the usual notion of holonomy. As we will show later, this gives us a natural extension
to the case of singular foliations.
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Remark. There is no canonical well-defined map π1(L, x)→ GermAutF(Sx, Sy). Indeed,
consider the singular foliation by the Lie groupoid action S1×R2 ⇒ R2 given by rotations.
Consider the leafwise path α which is the constant path in the origin. A slice is an open
subset of 0 in R2. An obvious extension is the time-dependent vector field Y (x, t) = (x, 0)
for all x. The germ associated to this extension is the identity on this open subset.
However, another extension as above is the one associated to the flow of x∂y − y∂x. The
associated diffeomorphism corresponds to a rotation. They have different derivatives at
0, and hence obviously define different diffeomorphisms.

The reason this fails in the singular case comes from the fact that we have too much
choice in the extension. To look at this more carefully, we look at the following result,
whose statement and proof can be found in ([AZ], prop. 2.3). It tells us how the ambiguity
manifests itself at the level of the obtained diffeomorphism, namely that different choices
induce diffeomorphisms differing by an element in exp(FSx).

Lemma 5.1. [AZ] Let α be a leafwise path, then the image of Γ(., 1) in the quotient

GermAutF(Sx, Sy)/ exp(FSx)

is well-defined.

Proof. We denote x = α(0) and y = α(1). Let Zt and Z ′t be time-dependent vector fields
defining extensions Γ and Γ′ respectively. Denote by φt and φ′t their flow maps. One can
show ([P]) that the following identity holds

φ′t = φt ◦
(

time t flow of
{

(φs)
−1
∗ (Z ′s − Zs)

}
s∈R

)
. (5.1)

Since both time-dependent vector fields came from extensions of α, they satisfy (φs)
−1
∗ (Z ′s−

Zs)(x) = 0 for all s. Thus, their time t flow lies, by definition, in the set exp(F(x)). De-
note this time-t flow by N . Recall that FSx was obtained by restricting F to Sx. Hence,
we need to find a vector field in F tangent to Sx (and thus in FSx) whose time-t flow
coincides with (φs)

−1
∗ (Z ′s − Zs) on Sx. This can be done using a slightly different version

of lemma 5.4, which we will see later.

We now define the notion of holonomy transformations, as given in ([AZ], def. 2.4).

Definition 5.1. Let (M,F) be a foliated manifold and let x, y ∈ M be points on the
same leaf. Let Sx and Sy be slices at x and y respectively.
Then a holonomy transformation from x to y is an equivalence class in

GermAutF(Sx, Sy)

exp(IxFSx)
.

The set of all holonomy transformations is denoted HT (F), or simply by HT if the
foliation is clear from the context.

Notice that the denominator is different than the one given in lemma 5.1.

Remark. One might wonder why we choose this finer equivalence relation, when the
coarser one works too. An important reason is that for elements in exp(FSx), the derivative
at x is not necessarily the identity. As an example, consider the rotations in the plane as
discussed in remark 5.2.
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Let us look at what happens when the leaf is regular.

Proposition 5.1. [AZ] Let (M,F) be a foliated manifold, and suppose F is a regular
leaf. Then exp(IxFSx) and exp(FSx) are trivial.

Proof. Recall that F is a regular leaf if and only if there is a neighbourhood U around
F such that for each leaf F ′ satisfying F ′ ∩ U 6= ∅, one has dimF = dimF ′. Let Tx be
a slice at x, and consider Sx = Tx|Tx∩U . Then FSx is a trivial foliation (i.e a foliation by
points) since Sx ∩U is transversal to every leaf it intersects. In this case, IxFSx = 0, and
hence exp(IxFSx) is trivial. The fact that exp(FSx) are trivial follows from the splitting
theorem. Notice that for regular foliations, the foliation on Sx as in the splitting theorem
is the foliation by points. The associated vector field to this foliation is the trivial vector
field, hence exp(FSx) = IdSx is trivial.

Thus, holonomy transformations are elements of AutF(Sx, Sy). Recall that a path
holonomy was also an element of AutF(Sx, Sy). Thus, we have just shown that in the
regular case, the holonomy of a path was a holonomy transformation (which tells us we
are looking in the right direction).

Recall furthermore that Hy
x = {(x, y, [α])}. Hence, we get an injective set map

H → HT.

The above map has geometrical value: recall that often one thought about the holonomy
of paths by looking at their action on slices. This is exactly what is encoded by the above
map. The idea is now to extend this idea to the singular case.
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5.3 Interpreting the Holonomy Groupoid

In this final section, we give a way to interpret the holonomy groupoid in a geometric way.
There are two main statements, theorem 5.2 and theorem 5.3. Briefly, the first theorem
tells us that we can interpret elements in the holonomy groupoid via their action on slices,
and the second theorem tells us that this is faithful in a certain sense.

5.3.1 Main statement

In this section, we extend earlier results to get a more geometrical interpretation of the
holonomy groupoid. For this, we follow the approach of Androulidakis and Zambon in
section 2.3 of their paper [AZ]. The goal is to find a (well-defined) map

Φy
x : Hy

x →
GermAutF(Sx, Sy)

exp(IxFSx)

for some fixed transversals Sx and Sy. The statement we wish to prove is the following.

Theorem 5.2. Let (M,F) be a foliated manifold, and choose x, y ∈ L. Let Sx and Sy
be slices at x and y respectively. Then, the map

Φx
y : Hy

x →
GermAutF(Sx, Sy)

exp(IxFSx)
: h 7→ [ξ],

defined by taking any representative u ∈ (U, t, s) of h in the path-holonomy atlas, any
section b : Sx → U (satisfying (t ◦ b)(Sx) ⊂ Sy) through u, and setting ξ = t ◦ b is
well-defined.

For a graphical representation of this picture, see figure 5.2

Figure 5.2: A graphical representation of theorem 5.2

As one can see, there are several choices in the construction, and it is far from clear
that these leave the map well-defined. Independencies of choices aside, we first check if the
map can even exist. We assumed the existence of a bisection carrying a diffeomorphism
mapping Sx into Sy. The existence is guaranteed by the following result, see ([AZ], lemma
A.5) where the full proof can be found.
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Lemma 5.2. Let (U, t, s) be a bisubmersion and choose p ∈ U . Fix slices Sx and Sy
at x = s(p) and y = t(p). Then one can find a bisection through p which carries a
diffeomorphism mapping Sx into Sy.

Proof. We give a sketch of the proof. To find the bisection β, we first look at a section
β : Sx → s−1(Sx) ∩ t−1(Sy) whose existence can be argued from the fact that restricting
the source map to s−1(Sx) ∩ t−1(Sy) gives us (locally) a submersion. For this to make
sense, we need to show that the the latter domain is a submanifold, which is done by
arguing that (s, t) : U → M ×M is transverse to p at the submanifold Sx × Sy. One
then shows that the image of β is transversal to the kernel of (the restriction of) dt, hence
yielding a diffeomorphism t ◦ β : Sx → Sy. Then, one extends β to an honest section b of
s with Tp(Im(b)) ∩ ker(dpt) = 0. The latter implies that (dxb)(TxL) = {0} × TxL.

Since the path holonomy atlas is an atlas of the foliation, there exists an element
(W, t, s) in the path holonomy atlas and an element w ∈ W with s(w) = x and t(w) = y.
The following result tells us how these bisubmersions look like.

Lemma 5.3 ([AZ], lemma A.4). Let (W, t, s) be a bisubmersion in the path holonomy
atlas. Then W is isomorphic (as bisubmersions) to a finite composition of path holonomy
bisubmersions.

Proof. The elements in the path holonomy atlas are precisely those isomorphic to finite
compositions of path holonomy bisubmersions and the inverse of path holonomy bisub-
mersions. Thus, our lemma is equivalent with stating that the inverse of path holonomy
bisubmersions are isomorphic (as bisubmersions) to a path holonomy bisubmersion. Re-
call that the inverse of a bisubmersion (U, t, s) is (U, s, t), which we denote by U−1. The
isomorphism (interpret it as ”flowing back”) is given by

U → U−1 : (y, x) 7→ (−y, expx(
∑

yiXi)),

where Xi are the local generators associated to U . It is immediate that this is indeed an
isomorphism of bisubmersions.

With the existence questions out of the way, let us consider how we will attack this
problem. The following lemma will come in handy.

Lemma 5.4 ([AZ], lemma A.6). Let (M,F) be a foliated manifold, and let x ∈ Sx be a
slice. Suppose {Zt} is a time-dependent vector field on M lying in IxF whose time-1 ψ
flow maps Sx into Sx. Then one can find a time-dependent vector field tangent to Sx in
IxFSx whose time−1 flow coincides with the restriction of ψ to Sx.

Proof. (Sketch) Let us briefly discuss the idea. Using the splitting theorem, one can find
coordinates such that in a neighbourhood W of x we get W ∼= Ik × Sx. Using this, one
can define the projection πSx : W ∼= Ik × Sx → Sx. One then restricts the flow ψt of
{Zt} to Sx for all times t, and then projects the flow to Sx. This yields a smooth family
of diffeomorphisms φt = πSx ◦ ψt|Sx , and defines a time-dependent vector field Yt on Sx
whose time-t flow is φt.
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With our goal in mind, we notice that we still miss an important ingredient. We wish
to compare bisubmersions, in particular the diffeomorphisms they induce on slices. The
above lemma tells us that we should try to associate to the induced diffeomorphisms the
flow of a time dependent vector field. One way to obtain time dependent vector fields is
via (smooth) families of diffeomorphisms. First, we consider the N−fold composition of
path holonomy bisubmersions. From the definition of the composition of bisubmersions,
one can see a composition as

W2 ◦W1 = (W2 ×s2,t1 W1),

which can be identified with {(y2, y1, x1)|(y1, x1) ∈ W1, (y2, t1((y1, x1)) ∈ W2}. The latter
can be seen as a subset of Rn × Rn ×M . In the case of N−fold compositions, we can
consider them as an open subset of Rn× ...×Rn×M , where there are N factors Rn. Using
this interpretation, we have the following result. One can find the full proof in ([AZ], pp.
35).

Lemma 5.5 ([AZ], lemma A.4). Let W be any bisubmersion in the path holonomy atlas,
x ⊂ M0 an open subset in s(W ). Write W ⊂ Rn × ... × Rn ×M , where we made use
of lemma 5.3. The graph of any map b : M0 → Rn × ... × Rn satisfying (dxb)(TxL) = 0
admits a canonical deformation to the zero bisection {0} ×M0 by paths of bisections of
W .

Proof. (Sketch) Write b = (bN , ..., b1) : M0 → Rn × ...× Rn. Define the path bt via:

bt := (0, ..., 0, tb1) for t ∈ [0, 1]

bt := (0, ..., 0, (t− 1)b2, b1) for t ∈ [1, 2]

...

bt := ((t−N + 1)bN , bN−1, ..., b2, b1) for t ∈ [N − 1, N ].

One can show that the image of s−sections b̃ of path holonomy bisubmersions such that
(dxb̃)(TxL) is the zero bisection are bisections near x, and that for these maps the image
of tb̃ for t ∈ [0, 1] are bisections at x. Iteratively using these results, we find the desired
result.

Let us now prove theorem 5.2. We use the proof found in ([AZ], pp. 36-37).

Proof. [AZ] (of theorem 5.2) Let h ∈ Hy
x , and consider an element (U, t, s) in the path

holonomy bisubmersion with u ∈ U such that h = [u]. For the remainder of the proof, we
identify U with its composition of path holonomy bisubmersions using lemma 5.3. Using
lemma 5.2, we can find be a section β of s such that (t ◦ β)(Sx) ⊂ Sy. Extend β to a
bisection b with (dxb)(TxL) = 0. Denote by bt the path in lemma 5.5, deforming b to
the zero bisection. Let (V, t′, s′) be any other bisubmersion in the path holonomy atlas
containing a point v ∈ V with [v] = h. Let α : Sx → V be an s′−section for which
(t ◦ α)(Sx) ⊂ Sy. Since [v] = [u], we can find by definition a morphism f : V → U
mapping v to u. Evidently, a morphism maps s′−sections to s−sections, and hence we
obtain an s−section f ◦α through f(v) = u which records the same diffeomorphism as α.
Extend f ◦α to bisection a of U through u with the property that (dxa)(TxL) = {0}×TxL.
Again, we can associate a path at of bisections deforming a to the zero bisection. In this
way, we only have to work with U , or in other words we may forget V .
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Observe that f ◦ α = a|Sx carries the same diffeomorphism as α. Furthermore, since
each bt and each at is a bisection, we obtain two smooth families of (local) diffeomorphisms
φt and ψt. Consider now the smooth family of (local) diffeomorphisms

{
φ−1t ◦ ψt

}
t∈[0,N ]

.

We claim that this is the flow of a time dependent vector field, lying in IxF . Write
U = WN ◦ ... ◦W 1, where each W is a path-holonomy bisubmersion. We associate to the
smooth family of diffeomorphisms {φt} the time-dependent vector field Zt, coming from

Zt(φ(t)) =
d

dt
φt(z).

Fix an element 1 ≤ j ≤ N , and consider the path-holonomy bisubmersion corresponding
to W j. Fix t ∈ [0, N ] corresponding to W j, i.e t ∈ [j − 1, j]. Furthermore, let Y j

1 , ..., Y
j
n

be the local generators of F corresponding to W j. Recall how bt was defined in lemma
5.5, and write bj = (bj1, ..., b

j
n) : M0 → Rn. Then

Zt(φ(z)) =
n∑
i=1

bji (z)Y j
i (φt(z)).

Analogously, for at we find

Z ′t(ψt(z)) =
∑
i

aji (z) · Y (ψt(z)).

We rewrite both vector fields as follows:

Zt =
∑
i

((φ−1t )∗bji ) · Y
j
i ,

Z ′t =
∑
i

((ψ−1t )∗aji ) · Y
j
i .

Then their difference can be written as

Z ′t − Zt =
∑
i

(
(ψ−1t )∗aji − (φ−1t )∗bji

)︸ ︷︷ ︸
di,t

·Xj
i .

A difference of time-dependent vector fields is interesting, since it appears in equation
(5.1). Recall that this formula tells you how the flows of Z and Z ′ are related, in terms
of their difference Z ′ − Z.

ψt = φt ◦
(

time-t flow of
{

(φs)
−1
∗ (Z ′s − Zs)

}
s∈[0,N ]

)
The claim holds if we can show that the term in curly brackets lies in IxF . This holds if
di,t vanishes at φt(x) for every i, t. Fix s and let j ∈ {1, ..., N} be such that ts ∈ [j− 1, j].
Notice that b(x) = a(x) = u. Again, by construction, we also have ψs(x) = φs(x). From
this, it follows that di,s vanishes at φs(x). Hence, φ∗di,s vanishes at Ix, from which the
claim follows. By construction, φN(Sx) = (t ◦ b)(Sx) ⊂ Sy, and the same holds for ψN .
Thus, we can apply lemma 5.4 to conclude.

This map hence gives us a way to view elements of the holonomy groupoid via their
action on slices. Some questions arise: first of all, do we lose any information? The
usefulness of this construction is determined by the kernel of this map: if a lot of dif-
ferent elements in the holonomy groupoid have the same image, we lose a lot of crucial
information. Second of all, what are its dependencies?
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5.3.2 Dependencies of Holonomy Transformations

In this section, we show that the construction depends on the choice of module, but (up
to some equivalence) is independent of chosen slices. We first tackle the choice of module.
We show the dependency on the module via an example.

Example 5.2. [AZ] Suppose we have two different foliations F ,F ′ whose induced par-
tition on M coincide. We have already seen such an example: consider M = R with
leafs {0}, the positive and the negative real numbers. These are the leafs of the foliations
generated by x∂x and x2∂x. Outside of the singular leaf, slices are singletons. For the
more interesting case, consider the origin. The slice is an open neighbourhood S0 of the
origin. Let (U, t, s) be the path-holonomy bisubmersion associated to F , generated by
x∂x. Let h be any element in H0

0 , which corresponds to an element (λ, 0) ⊂ R×M . Since
the choice of bisection through h is immaterial, we choose the constant bisection. We
already know the diffeomorphism: it will be x 7→ λex. Thus, the image of (λ, 0) under
Φ0

0 is the equivalence class of this diffeomorphism in GermAutF(S0, S0)/ exp(I0X). Now,
let us consider the case F ′ generated by x2∂x. The constant bisection through (λ, 0) now
carries the map expx(λx

2). Let us look at what this diffeomorphism looks like.
This diffeomorphism is the time-1 flow of the integral curve of λx2∂x. The integral curve
is given by the following differential equation.{

α(0) = x

α′(t) = λα(t)2.

Separating the equation, we find as a solution

α(t) =
1

−λt− k
,

where k can be explicitly found using the initial value (k = − 1
x
). We find that the

diffeomorphism is then given by x 7→ x
1−λx . Thus, (λ, 0) will get mapped to the equivalence

class of this diffeomorphism.

We now look at the dependency on slices. We state the result, whose proof can be
found in ([AZ], lemma 2.12). We will first need following lemma, whose statement and
proof can be found in ([AZ], lemma A.9 (pp. 39)).

Lemma 5.6 ([AZ]). Let (M,F) be a foliated manifold, and fix two points x, y on the
same leaf. Consider two sets of transversals Sx, Sy and Tx, Ty. Then there is a canonical
identification

GermAutF(Sx, Sy)/ exp(IxFSx)→ GermAutF(Tx, Ty)/ exp(IxFTx) : [η] 7→ [ϑy ◦ η ◦ ϑx],

where ϑx is the restriction of a map θx ∈ exp(IxF) that maps Tx to Sx, and analogously
ϑy is the restriction of a map θy ∈ exp(IxF) mapping Sy to Ty.

Proposition 5.2. [AZ] Assuming the setting of above lemma, the following diagram
commutes.

Hy
x

GermAutF (Sx,Sy)

exp(IxFSx )

GermAutF (Tx,Ty)
exp(IxFTx )
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Here, the map between the sets of holonomy transformations is the identification from
lemma 5.6.

Thus the choice of transversals is immaterial.

5.3.3 Injectivity

Consider the map Φy
x : Hy

x →
GermAutF (Sx,Sy)

exp(IxFSx )
. This identifies an element in the holonomy

group with its action on the corresponding slices. Bringing everything together, we have
the following result.

Lemma 5.7. [AZ] Let (M,F) be a foliated manifold. For every x ∈M , let Sx be a slice
at x. Then the map

Φ : H →
⋃
x∼y

GermAutF(Sx, Sy)

exp(IxFSx)
,

defined via theorem 5.2 is a groupoid morphism. Here x ∼ y means x and y lie on the
same leaf

The main result of this subsection says that above morphism is actually injective.
Thus, one can really view theorem 5.2 as a geometric interpretation of the holonomy
groupoid. Following lemma simplifies the problem at hand.

Lemma 5.8. Let Φ : H → G be a morphism of groupoids, covering the identity (see the
appendix, section 6.3.1). Then if each map Φx

x : Hx
x → Gx

x is injective, so is Φ.

Proof. Let h ∈ H, and suppose h : x 7→ y. Then Φ(h) : x 7→ y is an element of Gy
x.

Suppose Φ(h) = Φ(h′) for some h′ ∈ H. Consider Φ(h ◦ (h′)−1). The latter lies in Gx
x.

Notice that Φx
x(h ◦ (h′)−1) = Φy

x(h) ◦ Φx
y((h

′)−1) = Φy
x(h) ◦ (Φy

x(h
′))−1. Since their images

coincide, the latter is 1x, but then by injectivity of Φx
x, this can only hold if h◦(h′)−1 = 1x.

The latter implies that h = h′, since inverses are unique.

This reduces the problem to showing that the maps Φx
x are injective, for each x ∈M .

To achieve this, we will need the following lemma which brings local diffeomorphisms in
exp(IxF) in the context of bisubmersions in a very nice way.

Lemma 5.9 ([AZ], lemma 2.13). Let (M,F) be a foliated manifold and fix x ∈ M .
Suppose ψ ∈ exp(IxF). Then, one can find a path-holonomy bisubmersion (U, t, s) at x
and a bisection b through (x, 0) carrying the diffeomorphism ψ.

Proof. Let X1, ..., Xn be local generators of F whose image in Fx form a basis of Fx. Let
V be an open neighbourhood around x in which X1, ..., Xn form a generating set. Let
(U, t, s) be the path holonomy bisubmersion obtained from X1, ..., Xn. Since the Xi span
F in V , we can find locally defined functions f si ∈ Ix, defined for s ∈ [0, 1], such that if
we define X =

∑
f siXi one has ψ = exp(X) (actually, ψ will be a (finite) composition of

such time-1 flows, but one can just repeat the argument for the more general case).
Using the fact that t is a submersion and that t−1(F) = C∞c (U, ker ds)+C∞c (U, ker dt),

we can find Y1, ..., Yn in C∞c (U, ker ds) such that dt(Yi) = Xi. Furthermore, we can
choose these such that they are linearly independent of each other. Consider the vector
field Y =

∑
(f si ◦ t)Yi, defined for s ∈ [0, 1]. Then X and Y are t−related, whence



CHAPTER 5. HOLONOMY TRANSFORMATIONS 61

b(y) := exp(y,0)(Y ) (which is a section of s by construction) satisfies t ◦ b = exp(X) = ψ.
Thus, b is a bisection carrying ψ. Notice that for x, since all f si lie in Ix and since
t(x, 0) = x, we have that the bisection passes through (x, 0).

Let us first consider what happens in the singular case, where the foliation vanishes.

Lemma 5.10 ([AZ], lemma 2.14). Let (M,F) be a foliated manifold and suppose F
vanishes at x, i.e Fx = 0. Then Φx

x is injective.

Proof. Let h ∈ Hx
x , and choose a representative u ∈ (U, t, s). Suppose Φx

x(h) = [IdSx ],
which means that we can find an s−section through u carrying ψ ∈ exp(IxFSx). Notice
that, since Fx is zero, Sx must be the same dimension of M (i.e Sx is an open neighbour-
hood around x in M). Hence, ψ is in fact an element of exp(IxF). By lemma 5.9, we can
find a path-holonomy bisubmersion (V, tV , sV ) carrying ψ at (x, 0). We can therefore find
a morphism of bi-submersions U → V mapping u to (x, 0). Thus, h = [u] = [(x, 0)], and
since [(x, 0)] = 1x, we conclude.

In ([AZ], section 2.4.1), the authors have shown that a similar statement holds for the
regular case.

Proposition 5.3 ([AZ], prop. 2.17). Let (M,F) be a manifold with a regular foliation.
Fix x ∈M and a slice Sx. Then the map

Φx
x : Hx

x → GermAutF(Sx, Sx)

is an injective map, and hence, Φx
x is injective.

The reason why lemma 5.10 and lemma 5.3 are of particular interest, is due to the
splitting theorem. Recall that this theorem told us that we could decompose a singular
foliation in two parts: a regular part and a part where the singular foliation vanishes at a
point. The idea is now to reduce the problem to these parts, and use above results. For
this, we will need following lemma.

Lemma 5.11 ([AZ]). Let x ∈ (M,F) and fix an element h ∈ Hx
x . Choose an element

u ∈ (U, tU , sU) such that h = [u], and take any sU−section b : Sx → U whose induced
diffeomorphism τ := tU ◦b maps Sx into itself. Let W be a neighbourhood of x and choose
a local splitting W ∼= Ik × Sx using the splitting theorem. Then we can find a bisection
b : W → U through u whose induced diffeomorphism is the trivial extension of τ to every
slice:

Ik × Sx → Ik × Sx : (s, p) 7→ (s, τ(p)).

Proof. See ([AZ], lemma 2.19).

Using this lemma, we can state the result and proof as given by Androulidakis-Zambon
in ([AZ], thm. 2.20).

Theorem 5.3. Let (M,F) be a foliated manifold. Let x ∈M and fix a slice Sx through
x. Then the map

Φx
x : Hx

x →
GermAutF(Sx, Sx)

exp(IxFSx)

is injective. Therefore, Φ is injective.
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Proof. As before, we need to show that the only element h ∈ Hx
x such that Φ(h) = [IdSx ]

is h = 1x. For this, suppose h is any element in Hx
x that gets mapped to the identity. Fix a

path-holonomy bisubmersion (U, t, s) such that u ∈ U satisfies [u] = h. Let b : Sx → U be
any s−section such that τ = t ◦ b maps Sx to itself. Then it follows from the assumption
that τ ∈ exp(IxFSx). Let {Yt}t∈[0,1] be the time-dependent vector field on Sx lying in

IxFSx associated to τ . Choose a local splitting W ∼= Ik × Sx of a neighbourhood W
of x. Let b : W → U be the bisection through u obtained by lemma 5.11. Then the
diffeomorphism τ̃ := t ◦ b trivially extends τ along every vertical slice. Thus, τ̃ is the
time-one flow of a time-dependent vector field on W obtained via extending Yt trivially to
every vertical slice, from which it follows that τ̃ ∈ exp(IxF). From lemma 5.9, it follows
that any path-holonomy bisubmersion V defined near x, the element (x, 0) carries the
diffeomorphism τ̃ . This is also the diffeomorphism carried by b, and hence we can find a
morphism of bisubmersions U → V mapping u to (x, 0), hence proving the claim.



Conclusion

This thesis worked towards answering the three questions posed in the introduction:

1. How is the holonomy groupoid of a regular foliation constructed?

2. Can this construction be generalised to the more general case of singular foliations?

3. Is there a way to geometrically interpret these holonomy groupoids?

In chapter 1, we introduced the notion of holonomy for regular foliations. We saw how this
measured how leaves globally twisted around each other. By stating the Reeb stability
theorem (theorem 1.1), we saw how this notion could be used to prove some interesting
results. In chapter 2 (definition 2.5), we answered the first question: we defined the
holonomy groupoid for the regular foliations. In proposition 2.4, we saw that this groupoid
had a smooth structure, making it a Lie groupoid.

In chapter 4, we answered the second question. Following the approach by Androul-
idakis and Skandalis ([AS]), we used the notion of path-holonomy bisubmersions to con-
struct the holonomy groupoid in the singular case. We saw that this groupoid generalises
the holonomy groupoid in chapter 2. Furthermore, in section 4.4, we looked at the smooth-
ness question: when is this groupoid a Lie groupoid.

Finally, in chapter 5, we answered the last question. We used the notion of holonomy
transformations (as given by Androulidakis and Zambon in [AZ]) to understand how one
could geometrically interpret these holonomy groupoids.
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Chapter 6

Appendix

6.1 Appendix A: Frobenius’ Lemma

We first need some preliminary definitions.

Definition 6.1. A distribution is a subbundle D ⊂ TM .

Thus, a distribution is a smooth choice of linear subspace of constant dimension at
each point p, varying smoothly over the manifold. Central to Frobenius’ lemma is the
notion of involutive distributions.

Definition 6.2. Let D ⊂ TM be a distribution on M . Denote by Γ(D) the smooth
sections of D. We say that D is involutive if Γ(D) is closed under the Lie bracket.

Remark. This definition makes sense: as a subbundle of the tangent bundle, the sections
of D may be seen as vector fields on M attaining values in D. Hence, we can talk about
the Lie bracket of sections of D.

Given an immersed submanifold S ⊂ M , its tangent bundle can be seen as living in
TM . In the other direction, suppose D ⊂ TM is a distribution such that at each point
p ∈ M , we can find an immersed submanifold Sp through p satisfying TqS = Dq for all
q ∈ M . Such distributions are called integrable, and play a central role in Frobenius’
lemma. An immediate question is whether non-integrable distributions exist. The answer
is yes, an example is given in example 1.5. Thus, the next natural question is if we can
easily determine whether a distribution is integrable. This is the content of Frobenius’
lemma:

Lemma 6.1. Let M be a smooth manifold, and D ⊂ TM a distribution on M . Then D
is integrable if and only if D is involutive.

To conclude this section, we consider the following important result.

Proposition 6.1. There is a one-to-one correspondence between foliations on M and
involutive distributions on M .

{Regular foliations on M} ⇐⇒ {Involutive distributions on M} .
We briefly sketch how this correspondence looks like. Given an involutive distribution,

one obtains a foliation by considering through each point p ∈ M the integral manifolds.
Considering the largest (with respect to inlcusion) integral manifold ofD, one ends up with
a foliation. In the other direction, a foliation induces a regular foliation by considering
its tangent bundle.
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6.2 Appendix B: Time dependent vector fields

Definition 6.3. A time dependent vector field on a manifold M is a smooth map

Y : D ⊂ R×M → TM : (t, x) 7→ Y (t, x) = Yt(x) ∈ TxM.

Remark. Fixing t ∈ π1(D) (where π1 is the first projection), the vector field Y (t,−) = Yt
is a vector field in the usual sense, defined on the open set π2(D).

Example 6.1. Consider the fluid velocity vector field of some unsteady flow of water
around a pole.

These vector fields can be seen as honest vector fields on R ×M . Indeed, we define
a vector field Ỹ on R×M from the time dependent vector field Y by defining Ỹ (t, x) =
(1, Y (t, x)). In other words, we have Ỹ = ∂t + Y .
Time-dependent vector fields are closely related to isotopies.

Definition 6.4. An isotopy of M is a smooth 1−parameter family {φt : M →M}t∈[0,1]
of diffeomorphisms such that φ0(x) = x for all x, and Φ : M × I → M : (p, t)→ φt(p) is
smooth.

Any isotopy φt defines a (unique) time-dependent vector field Xt by the equation

d

dt
φt = φ∗tXt.

The vector Xt(p) is the velocity vector of the curve s 7→ φs(q) at time t where p = φs(q),
see figure 6.1

Figure 6.1: The time-dependent vector field of an isotopy

In the other direction, if X is complete, one can integrate a time-dependent vector
field to an isotopy {φt}, similar to the case of time-independent vector fields.
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6.3 Appendix C: Lie Groupoids and Algebroids

In this part of the appendix, we discuss results regarding groupoids and algebroids. We
build upon the material defined in chapter 2.

6.3.1 Morphisms of Lie Groupoids

Definition 6.5. Let G ⇒ M and H ⇒ N be two Lie groupoids. A morphism of Lie
groupoids (F, f) is a pair of smooth maps F : G→ H and f : M → N such that

1. The following diagrams commute:

G H G H

M N M N

F

s s

F

t t

f f

2. F behaves nicely under multiplication: for any composable (g, g′), one has

F (g · g′) = F (g) · F (g′).

3. F preserves the identity arrows:

F (1p) = 1f(p) ∀p ∈M.

Remark. Two Lie groupoids are said to be isomorphic if there exist Lie groupoid homo-
morphisms (F, f) and (G, g) such that F = G−1 and f = g−1. Notice that, in particular,
the base manifolds are diffeomorphic.

We would like to remark that this is not the only notion of equivalence of Lie groupoids.
To hint to the other cases, recall that a Lie groupoid could be seen as a smooth category
in which every arrow is invertible. Thus, one could use the different types of equivalences
for categories to define other notions of equivalence of Lie groupoids.
Suppose now that H ⇒ M and G⇒ M are two Lie groupoids with the same associated
base manifold M . A Lie groupoid homomorphism is then a pair (F, f), where f : M →M
is smooth. We call F a Lie groupoid homomorphism covering f .

6.3.2 Integrability of Lie Algebroids

In this subsection, we will very briefly touch upon the topic of integrability of Lie alge-
broids. This section should be seen as an exposition of the main results, and is not meant
to be explanatory in any way.
Recall the following classical result in differential geometry, called Lie’s third theorem.

Theorem 6.1. Every finite-dimensional real Lie algebra g integrates to a Lie group G.

From this, the integrability of Lie algebroids over a point (which are Lie algebras)
follows. This is not the only type of Lie algebroids whose integrability was known: as we
have seen in section 4.4, Lie algebroids with almost injective anchor map are integrable
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by Lie groupoids, one of which corresponds to the holonomy groupoid of the induced
foliation. The natural question is then if Lie’s third theorem also holds in the case of Lie
algebroids. In 1967, Pradines claimed that this was true. This claim was false, however,
as Almeida and Molino constructed a counterexample in 1985 (see [AM]). We very briefly
sketch the counter-example, but the argument used is more modern. To any closed 2−form
ω ∈ Ω2

cl(M), one can associate a certain Lie algebroid Aω which as a bundle is TM × R.
The Lie algebra structure on its sections is given by

[(u, f), (v, g)]Aω = ([u, v]TM , u · g − v · f + ω(u, v)).

To this Lie algebroid, they associated a group Nx(Aω). They showed that if Nx(Aω) was
not discrete, the associated Lie algebroid was not integrable.
There were other counter examples known, but an unanswered question was if there was
a computational way to determine if a given Lie algebroid is integrable or not. In [CF2],
the authors found the exact obstructions to integrability. For completeness, we state this
result.

Theorem 6.2. A Lie algebroid A on M is integrable if and only if

• Nx(A) ⊂ Ax is discrete (i.e r(x) 6= 0)

• lim infy→xr(y) > 0,

for all x ∈M.

Here, r is a function that measures the discreteness of the groups Nx(A). In the
example given above, the first condition was violated.

Example 6.2. For completeness, we give a concrete example. Choose M = S2×S2, and
consider the 2−form dV ⊕ λdV . Here, dV is the volume form on S2, and λ ∈ R. Then
the Lie algebroid is integrable precisely when λ is rational.
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6.3.3 Singular foliations and Lie algebroids

We have seen in example 3.4 that a Lie algebroid induces a singular foliation, namely the
image of the sections under the anchor map. In this section, we consider the converse:
whether a singular foliation always has an associated Lie algebroid, as was asked by An-
droulidakis and Zambon. Before giving the example, let us first consider their argument.
Let F be a foliation coming from a Lie algebroid. Thus, F = #(C∞(M,A)). Consider
ker(#x), which is the isotropy of the Lie algebroid A at a point x. In the paper, they
show that there exists a surjective linear map ker(#x)→ gx. Thus, the dimension of the
isotropy Lie algebra gx is bounded above by the (vector bundle) rank of A. In particular,
dim(gx) is bounded above by some natural number for all x ∈M .

Example 6.3. Using above reasoning, it suffices to find a singular foliation whose isotropy
lie algebra is not bounded by above. First, consider the module Fk of vector fields
that vanish at the origin to order k. This module consists of vector fields of the form
P (x, y)∂x+Q(x, y)∂y, where P,Q are homogeneous polynomials of total degree k. Hence,
they are generated (using C∞(M)−linear combinations) by the 2k+2 vector fields xiyj∂x
and xiyj∂y, where i + j = k. This singular foliation thus has Fk(0,0) = g(0,0) = R2k+2. For

k ≥ 1, we now define F̃k , generated by (x−k)iyj∂x and (x−k)iyj∂y. Intuitively, these are
shifts of the Fk to the point (k, 0). We now glue together these foliations by considering
the foliation F generated by ∪k≥1φkF̃k, where the φk are smooth bump functions with
small support containing (k, 0). We end up with a foliation that for each k behaves like
Fk near the point (k, 0). Thus, the infinitesimal isotropy cannot be globally bounded
above, which shows that F cannot come from a Lie algebroid.
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